1. Обозначим тот самый острый за х. Тогда сумма остальных равна 8х. Значит сумма всех четырех равна х+8х=9х=360. Отсюда х=40. Смежный с ним будет 180-40=140. И два оставшиеся - вертикальные. ответ: 40, 140, 40, 140.
2. Если сумма углов первой пары составляет 2/3 суммы другой пары, то соответственно, сумма второй пары составляет 3/2 суммы первой. За х обозначим сумму первой пары. Тогда 3х/2 - сумма второй пары. Опять-таки сумма всех 4 углов равна х+3х/2=5х/2=360. Отсюда 5х=720, значит х=144. Значит один из этих вертикальных равен 72. Ему смежный 108. ответ: 72, 108, 72, 108.
Для решения задачи нужно знать длину АD, DН и стороны основания, синус и косинус 30° АН- высота, медиана и биссектриса треугольника САВ Треугольник в основании правильный, угол НАВ=60:2=30° DН=АН:соs 30° AH=AB*cos 30°=(а√3):2 DН=(а√3):2]:√3):2=а DА=DН*sin 30°=а/2 Площадь боковой поверхности пирамиды состоит из суммы площадей треугольника АDВ и 2-х равных треугольников САD и ВАD ( у них равны стороны). S BDC=DH*CB:2= а*а:2=а²/2 SDAC+S DAB=2*AD*AB:2=2*а²:4=а²/2 Площадь боковой поверхности пирамиды: S бок =а²/2+а²/2=а²
Sбок=260м²
Решение:
OK=AB/2=10/2=5м
∆SOK- прямоугольный треугольник
SK=√(SO²+ОК²)=√(12²+5²)=√(144+25)=
=√169=13м.
Sбок=1/2*4*АВ*SK=2*13*10=260м²