1) 1м.
2) 21 кв. ед.
3) 34.25 кв. ед.
Объяснение:
Дано. Стороны грядки, имеющей форму прямоугольника, равны 2,5 м и 0,4м.
Найти периметр грядки, равновеликой данной и имеющей форму квадрата.
Решение.
Равновеликие прямоугольник и квадрат у которых равные площади.
Найдем площадь прямоугольника
S=ab = 2.5 * 0.4 = 1 м².
S квадрата = S прямоугольника
S квадрата =a²; a²=1;
a=±1; (-1 - не соответствует условию.)
а=1 м.
Равновеликим прямоугольнику со сторонами 2,5 м и 0,4 м является квадрат со стороной 1 м.
***
2) Дано. ABCD - трапеция. AB=6; BC=4; AD=10; угол A=30*.
Найти площадь.
Решение.
Проведем высоту ВЕ. Получили треугольник АВЕ, в котором угол А=30* АВ=6 - гипотенуза. АЕ и ВЕ - катеты, а ВЕ=h - еще и высота трапеции.
BE =h = AB* sin 30*=6*1/2=3.
Площадь S=h(a+b)/2 = 3*(10+4)/2=3*14/2=21 кв. ед.
***
3) Дано. Δ ACD, у которого ∠А=30°; ∠ACB=60°; внешний угол D = 135°; BC=5 - высота. Найти площадь.
Решение.
В Δ BCD внутренний угол В = 180°-135° = 45°. Следовательно Δ BCD - равнобедренный ВС=BD = 5.
Из Δ АВС АВ = ВС/ tg30° = 5/0.577 = 8,7.
AD = 8,7 + 5=13,7.
Площадь S=1/2*AD*BC = 1/2* 13.7*5 = 34.25 кв. ед.
ответ: стороны треугольника 13; 14; 15
Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);
получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)
площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):
а/b = 30/28 = 15/14
a/c = 30/26 = 15/13
b/c = 28/26 = 14/13
можно записать три стороны:
a = 15c/13; b = 14c/13 и с.
площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)
полупериметр = ((15/13)+(14/13)+1)*(c/2) = 21c/13
84 = корень из((21с/13)*(6c/13)*(7c/13)*(8c/13))
84 = 7*3*4*c^2/169
c^2 = 169
c = 13
b = 14
a = 15