ответ: Р=162 см
Объяснение:
Пусть дана прямоугольная трапеция ABCD. у которой ВС и AD - основания, угол А =углу В=90 градусов. О- центр вписанной в трапецию окружности, точка М - точка касания окружности стороны AD и точка К - точка касания окружности стороны ВС. АМ=20 см, MD=25 см, тогда ОМ=ОК=r=20см и АВ=40 см. DM=DK=25 см как отрезки касательных,проведенных из одной точки. Угол С+ угол D трапеции=180 градусов, как внутренние накрест лежащие углы, DO и CO - биссектрисы соответствующих углов, то угол CDO+DCO=90градусов, следовательно угол COD=90 градусов, т.е. треугольник COD - прямоугольный, у которого ОК - высота, проведенная к гипотенузе, OK^2=DK*CK, CK=400/25=16 см. Значит периметр трапеции равен 20+25+25+16+16+20+40=162 см
1.<А=40°
2. 18 см
Объяснение:
1. АВ=CD и BC=AD по условию, сторона BD общая доя двух треуголиников.
Соответственно по третьему признаку равенства треуголиников треугольники ABD и CBD равны
Исходя из этого имеем угол С равен углу А и равен 40°
2. Медиана делит сторону пополам. Исходя из этого получаем: АК=ВК=2 см, ВМ=СМ=3 см и АN=CN=4 см
АВ= АК+ВК=2АК=2*2=4 см
ВС= ВМ+СМ=2ВМ=2*3=6 см
АС= AN+CN=2CN=2*4=8 см
Периметр треугольника АВС=АВ+ВС+АС=4+6+8=18 см
3. Треугольник АВС равнобедренный, значит АВ=ВС. BM=BN по условию задачи. Соответственно получаем, что АМ=СN.
BD Медиана, значит получаем что АD=CD.
Так как треугольник АВС равнобедренный, соответственно угол А равен углу С.
По первому признаку равенства треугольников получаем, что треугольник MAD равен треугольнику NCD.
Из этого получаем, что MD=ND