Обозначим О центр вписанной в треугольник окружности. Обозначим точки касания вписанной окружностью М - со стороной АВ, Р - со стороной ВС, и - точно так - же точку касания с KL обозначим N.
Из-за того, что АСKL - вписанный четырехугольник, угол KLC + угол ВАС = 180 градусов, но угол BLK + угол KLC = 180 градусов, поэтому угол BLK = угол ВАС. Поэтому треугольник ВКL подобен АВС.
Обозначим BM = BP = x; АМ = АК = y; CK = CP = z - отрезки, на которые делят стороны точки касания вписанной окружности.
x + y = 7;
y + z = 8;
x + z = 10;
x - y = 2; 2*x = 9; нам понадобится именно эта величина, остальное считать не будем. Периметр треугольника BKL равен 2*x = 9; поскольку KM = KN и NL = LP, поэтому BK + KL + BL = BK + KN + NL + BL = MB + BP = 2*x
Из того, что BKL подобен АВС, следует, что BL = KL*7/8; BK = KL*10/8, периметр равен KL*25/8; Поэтому
KL*25/8 = 9; KL = 72/25;
Боковая поверхность пирамиды состоит из 4-х одинаковых треугольника с основанием а и высотой в виде апофемы А.
Найдём сторону а основания.
Треугольник, состоящий из высоты Н = 16, бокового ребра L = 20см и половинки диагонали основания 0,5d является прямоугольным с гипотенузой А. По теореме Пифагора: L² = (0,5d)² + Н²
20² = (0,5d)² + 16²
(0,5d)² = 400 - 256 = 144
0,5d = 12
d = 24(cм)
Диагональ d и сторона а квадрата связаны соотношением
d² = 2а², откуда
а = d/√2 = 24/√2(cм)
Апофема А, высота Н и половинка стороны основания 0,5а составляют прямоугольный тр-к с гипотенузой, равной апофеме. По теореме Пифагора:
А² = (0,5а)² + Н² = (12/√2)² + 16² = 72 + 256 = 328
А = √328(см)
Площадь боковой поверхности пирамиды равна
Sбок = 4·0,5·А·а = 2·√328·24/√2 = 48·4√41 = 192√41 (см²)