Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
что по условию равно 48 см
Составляем уравнение
12х = 48
х=4
Тогда стороны 3·4=12 см, 4·4=16 см, 5·4= 20 см
Проверка, периметр 12+16+20= 48 см.
Стороны нового треугольника являются средними линиями данного треугольника.
Средняя линия треугольника параллельна стороне треугольника и равна его половине.
Значит стороны нового треугольника в два раза меньше сторон данного :
6 см, 8 см, 10 см ( см. рисунок)
Периметр нового треугольника 6 + 8 + 10 =24 см
ответ. 24 см