Найдем площадь одного треугольника со сторонами 4 и 6 (т. к. диагонали параллелограмма делятся точкой пересечения пополам) и углом между ними 45: 1/2*(4*6*sin45)=12*корень из 2 деленное на 2=6* на корень из 2. Таких равных треугольников два поэтому 6 корень из двух умножаем на 2 получаем 12 корень из двух. Теперь найдем площадь треугольника со сторонами 4 и 6 ,но угол уже равен 180-45=135 градусов, т. е. 1/2 *(4*6*sin 135)=12*sin(90+45)=6 корень из двух и так как таких равных треугольников два, то умножаем на два получается то же самое 12 корень из двух. Теперь 12 корень из двух + 12 корень из двух получи 24 корень из двух. ответ площадь параллелограмма 24 корень из двух.
Центром симметрии параллелограмма является точка пересечения его диагоналей. Доказательство: Пусть X — произвольная точка параллелограмма. Проведём луч XO. На пересечении XO со стороной CD отметим точку X1. Рассмотрим треугольники XOB и X1OD: 1) BO=OD (по свойству диагоналей параллелограмма) 2) ∠BOX=∠DOX1 (как вертикальные)
3) ∠XBO=∠X1DO (как внутренние накрест лежащие при AB ∥ CD и секущей BD).
Следовательно, треугольники XOB и X1OD равны (по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: XO=X1O, то есть точки X и X1 симметричны относительно точки O.
Имеем: точка, симметричная произвольной точке параллелограмма, также принадлежит параллелограмму. Следовательно, параллелограмм является централь-симметричной фигурой.
90
40
50
Объяснение: