O(2;-1).
Объяснение:
Найдем длины сторон:
|AB| = √((Xb-Xa)² + (Yb-Ya)²) = √((6-(-4))² + (1-3)²) = √104 ед.
|СD| = √((Xd-Xc)² + (Yd-Yc)²) = √((-2-8)² + (-3-(-5))²) = √104 ед.
|BC| = √((Xc-Xb)² + (Yc-Yb)²) = √((8-6)² + (-5-1)²) = √40 ед.
|AD| = √((Xd-Xa)² + (Yd-Ya)²) = √((-2-(-4))² + (-3-3)²) = √40 ед.
Противоположные стороны четырехугольника ABCD попарно равны => четырехугольник ABCD - параллелограмм по признаку.
Что и требовалось доказать.
Диагонали параллелограмма делятся точкой пересечения пополам. Значит достаточно найти координаты середины отрезка АС.
Xo = (Xa+Xc)/2 = (-4+8)/2 = 2.
Yo = (Ya+Yc)/2 = (3-5)/2 = -1.
O(2;-1).
По свойству параллелограмма его диагонали, в точке пересечения, делятся пополам, тогда АО = СО и ВО = ДО.Рассмотрим треугольник АВС, у которого точки Е и О середины отрезков АВ и АС, а следовательно, ЕО средняя линия треугольника, тогда сторона ВС = 2 * ЕО = 2 * 4 см = 8 см.В том же треугольнике АВС отрезок OF так же есть средней линией треугольника, тогда АВ = 2 * ОF = 2 * 5 = 10 см.У параллелограмма противоположные стороны равны, АВ = СД = 10 см, ВС = АД = 8 см.Определим периметр параллелограмма.Р = АВ + ВС + СД + АД = 10 + 8 + 10 + 8 = 36 см.ответ: Периметр параллелограмма равен 36 см.
Объяснение: