1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
Вам очень повезло, вопрос взят с комментариев к профилю Zsedina Итак, дам самое краткое решение: 1) диагональ прямоугольника делит его пополам 2) из треугольника с острым углом, и равными сторонами находим: а) высоту параллелограмма противолежащий катет в прямоугольном треугольнике углу 30 градусов равен половине гипотенузы, что в нашем случае 4√3 б) угол при вершине равен 180-2*30=120 по т.косинусов основание=√(2*(8√3)²-2*(8√3)²*сos120)=8√3*√2-2*(-1/2)=8*3=24 3) площадь параллелограмма равна 4√3*24=96√3 кв ед
Свойство касательных к окружности, проведенной из одной точки:
отрезки касательных равны.
х-радиус вписанной окружности
(см. рисунок в приложении)
Учитывая, что периметр равен 54, составляем уравнение:
х+х+х+х+3+3+12+12=54
4х+30=54
4х=24
х=6
2. Из условия:
∠С=х
∠А=4х
∠В=4х-58°
Так как четырехугольник вписан в окружность, то
∠А+∠С=180°
∠В+∠Д=180°
4х+х=180°
5х=180°
х=36°
Тогда
∠С=36°
∠А=4х=4·36°=144°
∠В=4х-58°=144°-58°=86°
∠В+∠Д=180° ⇒ ∠Д=180°-∠В=180°-86°=94°
ответ. ∠А=144°
∠В=86°
∠С=36°
∠Д=94°