1. 1) ∠AOD=∠BOC=130° (вертикальные), значит ∪ ВС=130°(стягивает центральный угол).
2)∪ АВ=∪АС- ∪ВС=180°-130°=50°, значит
∠АСВ =50/2=25 °(вписанный не центральный угол)
2. 1) ∆ АВС- равнобедренный , значит ∠ А=∠С=(180°-177°)/2=1,5°.
2) ∪ ВС=1,5°·2=3° (стягивает вписанный угол), тогда ∠ВОС=3° (центральный угол )
3. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,
значит ∠ ОКМ=90°-7°=83° .
2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=83°.
4. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,
значит ∠ ОКМ=90°-84°=6°
2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=6°.
5. ∠ ABC =90°(вписанный), т.к ∪ АС=180° (опирается на диаметр АС). Тогда ∠С=180°-90°-75°=25°
6. 1) ∪ AN=73°·2=146° (стягивает вписанный ∠ NBA). Тогда
∪ NB =∪ AB-∪AN=180°-146°=34°.
2) ∠NMB=34°/2=17° (вписанный не центральный угол)
7. 1) ∆ АОВ- равнобедренный(АО=ОВ=r), значит ∠ОАВ=∠АВО=15°. Тогда ∠ОВС =56°-15°=41°.
2) ∆ ВОС- равнобедренный(ВО=ОС=r), значит ∠ОВС=∠ВСО=41°.
8. ∆ АОВ =∆ СОD (AO=OD=r, CO=OB=r, ∠AОВ =∠CОD-вертикальные ), значит ∠ОАВ =∠ОСD=25°
№1
Так как МК//АС по условию, то угол BMK=угол ВАС как соответственные при параллельных прямых МК и АС и секущей АВ.
Угол АВС – общий.
Тогда ∆МВК~∆АВС по двум углам.
Стороны подобных треугольников пропорциональны, то есть:
МВ/АВ=ВК/ВС
МВ/(АМ+ВМ)=ВК/BC
Пусть АС=n, тогда МВ=2n
2n/(n+2n)=16/BC
2n/3n=16/BC
2/3=16/BC
16*3=2*BC
48=2*BC
BC=24 см
ответ: 24 см.
№2
Так как ВС//DE по условию, то угол АСВ=угол АЕD как соответственные при параллельных прямых ВС и DE и секущей АЕ.
Угол DAE – общий.
Тогда ∆АСВ~∆АЕD по двум углам.
Стороны подобных треугольников пропорциональны, то есть:
АВ/АС=АD/AE
8/12=AD/27
2/3=AD/27
3*AD=27*2
3*AD=54
AD=18 см
ВD=AD–AB=18–8=10 см
ответ: 10 см