Площадь поверхности заданного многогранника равна сумме площадей большого и маленького параллелепипедов с ребрами 1, 5, 7 и 1, 1, 2, уменьшенной на 4 площади прямоугольника со сторонами 1, 2 — передней грани маленького параллелепипеда, излишне учтенной при расчете площадей поверхности параллелепипедов:
S=
=2(5 умножить на 1 плюс 7 умножить на 1 плюс 7 умножить на 5) плюс 2(1 умножить на 1 плюс 2 умножить на 1 плюс 2 умножить на 1) минус 4(2 умножить на 1)=
=96.
ответ: 96.
Объяснение:
9/12 ₽/'1₽!'08#!'0=#!#standoff2' #09'! ##'
а^2-b^2=112. с^2=400. выразим а^2=112+b^2 и подставим в теорему 400=112+b^2+b^2.
2b^2=400-112=288
b^2=144
b=12
а^2=144+112=256
а=16
с=20
Р=12+16+20=48