Пусть АВ=х, тогда АD=(Х+4). Угол А = б0°. Угол В = 180°- 60°=120°. По теореме косинусов АС² = АВ²+ВС²- 2*АВ*ВС*СоsВ. Соs120° = - 0,5. АС² = Х²+(Х+4)² - 2*Х*(Х+4)*(0,5). 196 = Х²+Х²+8Х+16+Х²+4Х, или ЗХ²+12Х-180 = 0. Решаем квадратное уравнение: Х²+4Х-60=0. Если b = 2k, можно применить формулу: х=(-k± √(k²-ас))/а. Тогда Х = 6. Отрицательное значение Х нас не устраивает. Итак, АВ=6 см , АD=10 см. Тогда диагональ ВD найдем по той же теореме косинусов: ВD² = АВ²+ВС²- 2*АВ*ВС*СоsА. Соsб0°=0,5. ВD²=36+100-60=76. ВD=2√19≈8,72. Sabcd = AB*AD*Sin60° = 6*10*(√3/2)=30√3≈51,96≈52 см². ответ: BD=2√19≈8,72. Sabcd=30√3≈51,96≈52 см².
равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
Проекция наклонной на плоскость - это отрезок один из концов которого есть один из концов наклонной принадлежащий данной плоскости, другой - перпендикуляр, опущенный из второго конца наклонной на данную плоскость. Рассмотрим треугольник, образованный наклонной, ее проекцией и перпендикуляром опущенным из конца наклонной не принадлежащего данной плоскости на эту плоскость. Он прямоугольный. Если катет вдвое меньше гипотенузы, то угол противолежащий катету равен 30 градусов, следовательно угол фи равен 180 - (90+30)=60
По теореме косинусов АС² = АВ²+ВС²- 2*АВ*ВС*СоsВ. Соs120° = - 0,5.
АС² = Х²+(Х+4)² - 2*Х*(Х+4)*(0,5). 196 = Х²+Х²+8Х+16+Х²+4Х, или
ЗХ²+12Х-180 = 0. Решаем квадратное уравнение: Х²+4Х-60=0. Если b = 2k, можно применить формулу: х=(-k± √(k²-ас))/а. Тогда Х = 6. Отрицательное значение Х нас не устраивает.
Итак, АВ=6 см , АD=10 см. Тогда диагональ ВD найдем по той же теореме косинусов: ВD² = АВ²+ВС²- 2*АВ*ВС*СоsА. Соsб0°=0,5.
ВD²=36+100-60=76.
ВD=2√19≈8,72.
Sabcd = AB*AD*Sin60° = 6*10*(√3/2)=30√3≈51,96≈52 см².
ответ: BD=2√19≈8,72. Sabcd=30√3≈51,96≈52 см².