2. Периметр параллелограмма равен 60 см. Разность двух его углов равна 60°, а разность двух его сторон — 4 см. Найдите площадь параллелограмма памогите сор
Т. к проведена высота к стороне параллелограмма, то образуется угол 90 градусов, если рассмотреть треугольник, то он будет равнобедренный (180-(90+45)=45 градусов второй угол), а значит сторона треугольника будет равна 4 см, а сторона параллелограмма будет 8 см (т. к разделена пополам), найдем еще одну сторону параллелограмма, это периметр минус удвоенное произведение известной стороны и все разделить пополам (27,4 - 2*8)/2= 5, 7 см значит стороны параллелограмма 8 см и 5,7 см диагональ соответственно равна его стороне т.е 5,7 см
Октаэдр в задаче можно представить себе следующим образом. Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра. К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0) то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно. Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c. Вот тут самая важная часть решения. "С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба. Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней. В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра). То есть получается такая задача для нахождения b (при заданном c) "В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2". Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1); Отсюда b = 2√3; b^2 = 12;
х-одна сторона параллелограмма
у - другая сторона
{ 2(х+у)=60
х-у= 4; х=4+у
Подставим в первое уравнение:2(4+у+у)=60
4у+ 8=60; 4(у+2)=60; у+2=15; у=13
х=4+13=17
х=13; у=17
α- один угол
β- другой
{2(α+β)=360
α-β=60; α=60+β;
2(60+β+β)=360; 60+2β=180; 2β=180-60; 2β=120
β=60°, α=120°
S=xySin60°; S=17•13•Sin60°; S=221√3/2
ответ: Площадь параллелограммаравна 221√3/2см²или приблизительно 191см²