Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся ПОПОЛАМ Рассмотрим прямоугольный треугольник с катетами 10:2=5 и 24:2=12 По теореме Пифагора находим гипотенузу 5²+12²=25+144=169 ответ: сторона ромба равна 13
Подробно: При решении подобных задач нужно помнить о неравенстве треугольника. В теореме о неравенстве треугольника утверждается, что в треугольнике любая сторона меньше суммы двух других. Можно рассматривать два случая: 1) большей стороной является основание; 2) большей является боковая сторона. Если принять боковую сторону равной х, то для равнобедренного треугольника по этому условию получим х+х < 3х. Поэтому основание не может быть большей стороной, т.к. не удовлетворяет неравенству треугольника. ( Боковые стороны тогда просто не "дотянутся" друг до друга и "улягутся" на основание). ------------------------- Примем основание треугольника равным х. Тогда боковые стороны равны 3х каждая. Р= х+3х+3х=7х 7х=50 см
1. Дано: угол 2 = угол 1 + 34°; Найти: угол 3. Решение: Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1. Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение: угол 1 + угол 1 + 34° = 180°. Отсюда угол 1 = 73°. Значит, угол 3 = 73°. ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°. Найти: угол А, угол В. Рисунок к задаче - в приложении к ответу. Решение: Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B. Т.к. угол DCB = 37°, то угол B = 37°. Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB. Угол А = 180° - 90° - 37° = 53°. ответ: угол А = 53°, угол В = 37°.
Рассмотрим прямоугольный треугольник с катетами 10:2=5 и 24:2=12
По теореме Пифагора находим гипотенузу
5²+12²=25+144=169
ответ: сторона ромба равна 13