эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.
Дано: ABCD - трапеция; AD║BC; ∠ABC = 160°; ∠BCD = 110° FG = 8 - средняя линия NE = 3; BN=NC; AE=ED
Продлить стороны AB и DC ⇒ получился ΔBMC ∠MBC = 180° - ∠ABC = 180°-160° = 20° ∠BCM = 180° - ∠BCD = 180°-110° = 70° ∠BMC = 180° - ∠MBC - ∠BCM = 180° - 20° - 70° = 90° ⇒ ΔBMC - прямоугольный ⇒ медиана MN равна половине гипотенузы BC MN = BN = NC = X ⇒ ΔMNC - равнобедренный
BC║FG - средняя линия трапеции ⇒ ΔKMG подобен ΔNMC по двум соответственным углам ⇒ MK = KG ⇒ X + ЕN/2 = FG/2 X = 4 - 1,5 = 2,5 BC = 2X = 5 Средняя линия FG = (BC + AD)/2 = 8 BC + AD = 16; AD = 16 - 5 = 11
эта на теорему косинусов, но для того, чтобы начать решать через теорему, нужно знать стороны. а для этого нам даны координаты. найдем коориданты векторов ab,bc,ac. для этого вспомним правило: чтобы найти координаты вектора, нужно из координат конца вектора, вычесть координаты начала вектора.
ab(1-0; -1-1; 2+1)=ab(1; -2; 3)
bc(3-1; 1+1; 0-2)=bc(2; 2; -2)
ac(3-0; 1-1; 0+1)=ac(3; 0; 1)
теперь найдем длину этих векторов.
теперь запишем теорему косинусов, используя косинус угла с.