К окружности с центром в точке О проведены касательная АB (B -точка касания) и секущая АО, имеющая с окружностью общие точки С и D (С лежит между точками А и О). Найдите <ABC и <BAC, если геометрия 9 класс
Пусть у нас треугольник ABC - равнобедренный с основанием AC=4 и AB=BC. ∠A равен ∠C и равен 30°. Пусть вокруг треугольника ABC описана окружность с центром в точке O и радиуса R. Обозначим точку пересечения радиуса OB со стороной AB как M.
Тогда ∠A опирается на дугу окружности BC. Следовательно, градусная мера дуги BC равна 2 градусным мерам ∠A, т.е. 2*30°=60°. Градусная мера центрального угла BOC, опирающегося на ту же дугу BC, равна градусной мере дуги BC, т.е. ∠BOC = 60°. Треугольник BOC имеет равные стороны OB и OC (это радиусы окружности) и угол между ними в 60°. Значит, этот треугольник равносторонний и сторона BC равна ОB, т.е. R. При этом AM = MB = AB/2 = 2. BM = MO = R/2. Из треугольника BMC по теореме Пифагора находим R:
Решение, я думаю, довольно простое. Не нужны формулы, просто включаем мозги. Итак, есть выпуклый многоугольник. как подсчитать , сколько диагоналей можно провести из одного угла? Этот угол не в счет. Значит, "минус один". К соседним двум тоже не проведешь диагональ, т.к. это будут стороны. Значит, еще минус два. Итого минус три . к остальным проводятся. Т.е. у такого n-угольника можно из каждого угла провести (n-3) диагонали, а таких углов n? тогда диагоналей будет n*(n-3) но некоторые начинают повторяться . С 1-го и 2-го угла можно провести n-3, с 3-го n-4 и т.д. до n-2 угла. С него проводится только 1 диагональ. Т.е. считая с конца, можно провести 1+2+3+...+(n-3) (это со 2-го угла) + (n-3) (это с первого) . Получается арифметическая прогрессия S= и еще плюс (n-3)
где n-кол-во углов у нас n=15+3=18 тогда диагоналей 135 вроде так
∠A равен ∠C и равен 30°.
Пусть вокруг треугольника ABC описана окружность с центром в точке O и радиуса R.
Обозначим точку пересечения радиуса OB со стороной AB как M.
Тогда ∠A опирается на дугу окружности BC. Следовательно, градусная мера дуги BC равна 2 градусным мерам ∠A, т.е. 2*30°=60°.
Градусная мера центрального угла BOC, опирающегося на ту же дугу BC, равна градусной мере дуги BC, т.е. ∠BOC = 60°.
Треугольник BOC имеет равные стороны OB и OC (это радиусы окружности) и угол между ними в 60°. Значит, этот треугольник равносторонний и сторона BC равна ОB, т.е. R.
При этом AM = MB = AB/2 = 2.
BM = MO = R/2.
Из треугольника BMC по теореме Пифагора находим R:
BC²=BM²+MC²
R²=(R/2)²+2²
4R²=R²+16
R²=16/3
R=4/√3=4√3/3