б) 5.
Объяснение:
Из каждой вершины пятиугольника выходит две диагонали (сама с собой и соседними вершинами диагональ не образует), поэтому
5·2 = 10 - число отрезков, проведённых от всех вершин к противоположным.
При таком подсчёта каждая диагональ посчитана дважды (действительно, отрезки АС и СА - одна и та же диагональ), поэтому, чтобы найти число диагоналей выпуклого пятиугольника мы найденное количество отрезков разделим пополам:
10 : 2 = 5.
ответ: 5 диагоналей.
Заметим, что иногда пользуются готовой формулой:
в выпуклом n-угольнике n(n-3) / 2 диагонали.
Но раз уж от Вас требуют еще какого-то доказательства, то можно и так:
Пусть есть тр-ки АВС и А1 В1 С1 равны.
Покажем, например, что биссектриса АН = биссектрисе А1 Н1.
Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам).
Так же и про остальные биссектрисы.