Пусть АВС - равнобедренный треугольник с вершиной А, основанием ВС, известными боковыми сторонами AB=AC= a (см). BD - известная медиана, проведенная к боковой стороне АС. В равнобедренном треугольнике медианы, проведенные к боковым сторонам, равны. BD=CE= b (cм) Медианы равнобедренного треугольника пересекаются в одной точке О (центре тяжести треугольника), которая делит каждую из них в отношении 2:1, считая от угла, из которого они исходят ⇒ BO=CO= b* 2/3 = 2b/3 DO=EO=b * 1/3 = b/3 Строим треугольник. Чертим отрезок AB, равный а см. Находим середину этого отрезка и отмечаем точку Е. Раствором циркуля, равным EO, чертим дугу окружности с центром в точке Е. Раствором циркуля, равным ВО, чертим дугу окружности с центром в точке В. Дуги пересекутся в точке О, которая является центром тяжести данного треугольника. Из точки Е через точку О чертим отрезок CE, равный известной медиане (b). Соединяем точки A, B, C. Получаем искомый треугольник
1.Смежные углы-два угла, у которых одна сторона общая, а две другие являются дополнительными лучами. Сумма смежных углов 180 градусов. 2. Треугольник-это геометрическая фигура, образованная тремя лучами, соединяющими три точки, не лежащих на одной прямой. Построение: сначала строим один из заданных отрезков, а потом от каждой из точек, ограничивающих его, с циркуля откладываем две других стороны. Соединяем эти точки с точкой пересечения дуг. 3.1)МВ=NB(по условию) 2)DB=KB(по условию) 3) угол MBD=углу NBK(как вертикальные), значит треугольники равны по первому признаку равенства треугольников.
Построим ромб по стороне a и радиусу вписанной окружности r.
1) AB=a
2) проведем прямую n, параллельную AB, на расстоянии r
Для этого
- построим перпендикуляр к AB
- отложим на нем отрезок MN=r
- через точку N проведем прямую n, перпендикулярную MN
3) построим окружность на отрезке AB как на диаметре
4) пересечение окружности и прямой n = точка O
Угол AOB - прямой, так как опирается на диаметр AB.
Диагонали ромба пересекаются под прямым углом.
Диагонали ромба являются биссектрисами, точка их пересечения - центр вписанной окружности - удалена от стороны AB на радиус.
Таким образом, точка O - центр пересечения диагоналей ромба.
5) построим вершины С и D ромба, симметричные A и B относительно точки O.
Для этого
- проведем прямую BO
- отложим отрезок DO=OB итд