1. В треугольнике АВС А=50º,В=80º, АВ=11 см, АС=1,8 дм. Найдите периметр треугольника в сантиметрах. 2. В прямоугольном треугольники острые углы равны. Найдите длину высоты, проведенную из вершины прямого угла, если гипотенуза равна 34 см.
Найлем для начало стороны AB=√(8-4)^2+(2-6)^2 =√ 16 +16=2√8CD=√(-2-4)^2+(-1+3)^2 =√36+4 =√40 BC=√(4-8)^2+(-3-2)^2=√16+25=√41AD=√(-2-4)^2+(-1-6)^2=√36+49=√85 на рисунке можно видеть что это трапеция выходит, можно раздлить эту трапецию на два треугольника затем найти площадь каждой и суммировать Площадь треугольника S=ab/2*sinaнайдем угол между АВ и AD через скалярAB {4;-4}AD{-6;-7}cosa=4*-6+ 4*7 / √32*85 = 4/√2720теперь sina=√1-16/2720=52/√2720теперь площадь S= 52/√2720 * √2720/2 = 26 теперь площадь другого треугольника опять угол B (8; 2), C (4; -3), D (-2; -1) ВС={-4;-5} CD={-6;2} cosa= 24-10/√1640 = 10/√1640 sina = √1-100/1640 = √1540/1640 S=√41*40/2 * √1540/1640 =√1540/2 = √385 S=√385+26 площадь искомая
Дано: ABCD - ромб, АВ= ВС=CD =AD. AK = 2см, P = 16см. Найти: Угол Д и угол А. Решение: Определим сторону ромба \begin{lgathered}P=4a \\ a= \frac{P}{4} = \frac{16}{4} =4\end{lgathered}P=4aa=4P=416=4 С угла А проведем высоту к стороне CD. Получаем, что треугольник AKD - прямоугольный. 1. Синус угла D - это отношение противолежащего катета к гипотенузе, тоесть: \sin D= \frac{AK}{AC} = \frac{2}{4} = \frac{1}{2}sinD=ACAK=42=21 По таблице синусов 1/2 это будет 30 градусов, Угол D = углу B = 30градусов, тогда угол А =180-30=150градусов
1. треугольник равнобедренный,тк 180-(50+80)=50°
т.е. АВ=ВС=11,
Р=11+11+1,8=23,8см