1. Раз BAD = 90 градусов и ABD = 45 градусов, то оставшийся угол ADB= 180-90-45=45 градусов. 2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC. 3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD. 4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов. 5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180. 180-90-60=2х 30=2х х=15 градусов = угол ACD = ADC. 6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что: 45=15+CDB CDB = 30 градусов
Пусть A - Начало координат
Ось X - AB
Ось Y - AD
Ось Z - перпендикулярно плоскости ABC в сторону S
Пусть O - центр квадрата ABCD
Найдем высоту пирамиды SABCD - SO
Из прямоугольного треугольника ABC
AC = 7√2
AO= 7√2 / 2
Из прямоугольного треугольника SOA
SA = 14
AO= 7√2 / 2
SO = √ ( SA^2-AO^2)= 7√14/2
Координаты точек
N ( 2;7;0)
K ( 3.5+ 2/7 * 3.5 ; 3.5+ 2/7 * 3.5 ; 5/7 * 7√14/2) K(4.5;4.5;2.5*√14)
Вектор
AS ( 3.5;3.5; 3.5*√14)
Мы знаем что плоскость a параллельна AS - Значит ей принадлежит точка L отложенная от K на вектор минус AS ( минус для удобства )
L(4.5- 3.5 ; 4.5 -3.5 ; 2.5*√14 - 3.5*√14) L( 1; 1; -√14)
N K L - определяют нашу плоскость.
Уравнение плоскости
ax+by+cz+d=0
Подставляем координаты точек N K L
2a+7b+d=0
4.5 a + 4.5 b + 2.5*√14 c + d=0
a + b - √14 c +d =0
Пусть d= -2 , Тогда b=0 a =1 c = -1/√14
Искомое уравнение
x - z/√14 -2 =0
a) Так как коэффициент при y =0 , а прямая BC параллельна оси Y , наша плоскость параллельна BC . Доказано
б )
Нормализованное уравнение плоскости
k= √(1+1/14) = √(15/14)
x/k - z/k/√14 -2/k =0
Подставляем координаты точки B ( 7;0;0) в нормализованное уравнение для определения искомого расстояния
7/√(15/14) - 2 / √(15/14) = 5 / √(15/14) = √210 / 3