1) Т.к. треугольник ABC — прямоуг., значит, сумма острых углов равна 90°: угол А + угол С= 90°, т.е. угол С = 90° - угол А, т.ею угол С = 45°, следовательно, треугольник АВС — равнобедренный и прямоугольный и из этого следует, что АВ = ВС = 8,5м.
2) По теорема пифагора: АС²=АВ²+ВС²
АС²=(8,5 м)²+(8,5 м)²= 2 * (8,5м)² → АС = 8,5√2 см
если вам понравился мой ответ, можете поставить пометку «Лучший ответ»?
1) (рис 1) Формулы деления отрезка в данном отношении ∧ (∧-лямда ∧=АМ/МВ=1/2) х(м)=(х(а)+∧х(в))/(∧+1) х(м)=(-2+1/2*4)/1+1/2=(-2+2)/(3/2)=0 у(м)=(у(а)+∧у(в))/(∧+1) у(м)=(5+1/2*(-3))/1+1/2=(5-3/2)/(3/2)=7/2*2/3=7/3 М(0;7/3) 2) Если точка М принадлежит прямой АВ, то возможны 2 варианта: первый рассмотрен под цифрой 1), а второй т.А будет серединой отрезка МВ, тогда х(м) и у(м) можно найти из формул середины отрезка х(а)=х(м)+х(в)/2 -2=(х(м)+4)/2 х(м)=(-2*2)-4=-8 у(а)=у(м)+у(в)/2 5=(у(м)-3)/2 у(м)=5*2+3=13 М(-8;13) 3)(х(м)-х(а))²+(у(м)-у(а))²=100 и (х(м)-х(в))²+(у(м)-у(в))²=100 для удобства заменим х(м) на х, а у(м) на у, получим уравнения (х+2)²+(у-5)²=100 х²+4х+4+у²-10у+25=100 (х-4)²+(у+3)²=100 х²-8х+14+у²+6у+9=100 вычтем уравнения 12х-16у+16=0 3х-4у=-4 у=3/4х+1 подставим в первое уравнение (х+2)²+(3/4х-4)²=100 х²+4х+4+9/16х²-6х+16=100 25/16х²-2х-80=0 Д1=1+25/16*80=1+25*5=126=3√14 х1=(1+3√14)/(25/16)=16(1+3√14)/25 и х2=16(1-3√14)/25 у1=3/4*16*(1+3√14)/25+1=12(1+3√14)/25+1=(37+36√14)/25 у2=3/4*16*(1-3√14)/25+1=(37-36√14)/25
Вероятно, в задаче идет речь о построении перпендикуляра к прямой, проходящего через данную точку на прямой, с циркуля и линейки. Дано: прямая а, точка А, принадлежащая прямой. 1) Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.2) Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.3) Через точки пересечения этих окружностей (К и Н) проведем прямую b.Прямая b - искомый перпендикуляр к прямой а. Доказательство:А - середина отрезка ВС по построению (АВ = АС как радиусы одной окружности). Тогда КА - медиана треугольника ВКС.Треугольник ВКС равнобедренный, так как ВК = СК как равные радиусы. Значит медиана КА является и высотой, т.е. КА⊥а. Подробнее - на -
1) Т.к. треугольник ABC — прямоуг., значит, сумма острых углов равна 90°: угол А + угол С= 90°, т.е. угол С = 90° - угол А, т.ею угол С = 45°, следовательно, треугольник АВС — равнобедренный и прямоугольный и из этого следует, что АВ = ВС = 8,5м.
2) По теорема пифагора: АС²=АВ²+ВС²
АС²=(8,5 м)²+(8,5 м)²= 2 * (8,5м)² → АС = 8,5√2 см
если вам понравился мой ответ, можете поставить пометку «Лучший ответ»?