Треугольники Аа1В и Ав1В равны. У них общая сторона АВ, углы А и В равны, как у равнобедренного треугольника, стороны Ав1 и Ва1 равны. Из равенства этих треугольников имеем равенство углов в1ВА и а1АВ. Значит, треугольник АОВ равнобедренный. Угол в1ОА для него внешний. Он равен сумме двух внутренних не смежных с ним. Тогда углы ОАВ и ОВА равны по 30 градусов. Опускаем перпендикуляр из точки а1 на АВ. Получилась точка Д. Из треугольника Аа1Д АД=4,5, угол а1АВ равен 30, значит, Аа1 равна 4,5 разделить на косинус 30 = 4,5: (корень из 3 :2) = 3 корня из 3.
С другой стороны площадь этого треугольника равна
Здесь h - высота, проведенная к стороне равной 8 см.
Приравняем обе левые части уравнений (1) и (2)
12=4h
h=12:4
h=3 см
ответ: высота, проведённая к стороне, равной 8 см, равна 3 см.