Изначально так:///Пусть задана окружность ω (A; R) на плоскости Oxy, где точка A, центр окружности – имеет координаты a и b. ..Таким образом, координаты x и y любой точки окружности ω (A; R) удовлетворяют уравнению (x – a)^2 + (y – b)^2 = R^2./// Раскрыть скобки, получить х^2-2ах+а^2+у^2-2ву-в^2=R^2Преобразовав чуток поиметь своё выражение. Теперь в обратную:х^2+y^2+6х-8у=х^2+2*х*3+3^2-3^2 +у^2-2*у*4+4^2-4^4 = (х+3)^2 + (у-4)^2 ...Остальные цифири - в R^2 или ещё как, судя по недопечатанности хвостика вопроса вашего.Суть решения - из общей строки многочлена вытащить квадрат суммы/разности при "х", и квадрат суммы/разности при у.Остальное - как уж получится.Ага?
Начнем с углов, т.к это прямоугольный треугольник , то сумма острых углов равно 90, и получается пусть один угол будет x , а другой угол будет 2x. отсюда следует, x+2x=90 3x=90 x=30 один угол будет равен 30 градусам,другой 60 , напротив угла 30 градусов будет меньший катет, а нам известно, что сумма гипотенузы и меньшего катета равна 42, дело в том что катет , лежащий против угла в 30 градусов равен половине гипотенузы, отсюда следует (возьмем гипотенузу за а, а катет за b)
a+b=42, где b=1\2 a a+1\2a=42 3\2a=42 a=42×2;3=28 ответ 28 см
Раскрыть скобки, получить х^2-2ах+а^2+у^2-2ву-в^2=R^2Преобразовав чуток поиметь своё выражение.
Теперь в обратную:х^2+y^2+6х-8у=х^2+2*х*3+3^2-3^2 +у^2-2*у*4+4^2-4^4 = (х+3)^2 + (у-4)^2 ...Остальные цифири - в R^2 или ещё как, судя по недопечатанности хвостика вопроса вашего.Суть решения - из общей строки многочлена вытащить квадрат суммы/разности при "х", и квадрат суммы/разности при у.Остальное - как уж получится.Ага?