В любом треугольнике можно провести 3 медианы. Все они пересекаются в одной точке, в центре (центре тяжести) треугольника.
AK = KC , BK — медиана ABC ,
О — центр A 1B 1C 1 .
Биссектриса треугольника — отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой на противолежащей стороне.
Обратите внимание, что биссектриса угла — это луч, делящий угол на два равных, а биссектриса треугольника — это отрезок, часть луча, ограниченная стороной треугольника.
BK — биссектриса ABC ,
A 1О — биссектриса C 1A 1B 1 .
В каждом треугольнике можно провести 3 биссектрисы, которые пересекаются в одной точке, обычно обозначаемой латинской буквой I .
Точка пересечения биссектрис треугольника ( I ) — центр вписанной в треугольник окружности.
Высота треугольника — перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
второй катет - b
гипотенуза - c
имеем систему уравнений:
{a + b = 23
{(a*b)/2 = 60
{a = 23 - b
{[(23 - b) *b]/2 = 60
{a= 23 - b
{23b - b^2 = 120
{a = 23 - b
{b^2 - 23b + 120 = 0
имеем квадратное уравнение {b^2 - 23b + 120 = 0, находим его корни:
D = 529 - 480 = 49; √D = 7
b1 = (23 + 7)/2 = 15
b2 = (23 - 7)/2 = 8
a1 = 23 - b1 = 23 - 15 = 8 см
a2 = 23 - b2 = 23 - 8 = 15 cм
у нас есть два варианта катетов, но гипотенуза будет для них одна
с = √( a^2 + b^2) = √( 15 ^2 + 8^2) = √(225 + 64) = √289 = 17 cм