М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
asdf37
asdf37
21.05.2020 21:30 •  Геометрия

В равнобедренном треугольнике проведены высоты из вершин при основании.докажите что они равны

👇
Ответ:
illusionion
illusionion
21.05.2020

По определению в равнобедренном треугольнике боковые стороны равны.По свойствам равнобедренного треугольника известно, что высоты являются биссектрисами и медианами. Когда мы проведем высоты из вершин то получим маленькие треугольники они будут равны по боковым сторонам и двум углам, а в равных треугольниках соответственные элементы равны, следовательно высоты, которые являются сторонами равновеликих треугольников будут равны между собой.

Объяснение:

надеюсь прааильно если нет могу заново написать

4,4(6 оценок)
Открыть все ответы
Ответ:
Otahalepi
Otahalepi
21.05.2020
Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
4,8(26 оценок)
Ответ:
stovhelen
stovhelen
21.05.2020

Сначала делим четырехугольник диагональю на два треугольника.

Находим центр тяжести каждого треугольника как точку пересечения его медиан. Центр тяжести четырехугольника лежит на прямой О1О2, соединяющей центры тяжести этих треугольников.

Затем делим четырёхугольник на 2 треугольника при другой диагонали и находим так же центры тяжести других треугольников. Соединяем их отрезком О3О4.

Искомый центр тяжести четырёхугольника лежит в точке ЦТ пересечения отрезков О1О2 и О3О4.

ABD x y  BCD x y

O2        3 2  O3       2 2

ADC x y  ABC x y

O1 0,6667 1,3333 O4 3,3333 1,6667

ЦТ = х         у

   2,533     1,8667


Решить найти координаты центра тяжести однородной пластинки, имеющей форму четырехугольника abcd с в
4,6(64 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ