1. правильный шестиугольник, состоит из шести равносторонних треугольников.
найдем сторону шестиугольника ab=r=48/6=8м.
рассмотрим δсdo в нем cd=do=0,5a (где а - сторона квадрата) ⇒ a=2cd
по теореме пифагора найдем сd
r²=cd²+do²=2cd² ⇒ r=cd√2⇒ м
2.центр
вписанной в треугольник окружности - точка пересечения биссектрис его углов.
центр описанной окружности - точка пересечения срединных перпендикуляров.
в правильном треугольнике биссектрисы, медианы и срединные перпендикуляры . центры описанной и вписанной окружности также и
лежат в точке пересечения медиан.
r: r=2: 1, считая от вершины (свойство медиан).
радиус r вписанной в правильный треугольник окружности ( значит, и круга) равен 1/3 его высоты.
радиус rописанной вокруг правильного треугольника окружности равен 2/3 его высоты.
⇒r=2r
πr²=16π⇒r=4
r=2•4=8
πr²=π•8²=64π см²
3.длина окрудности равна l = 2πr => r =l/2π= 36π/2π = 18
а) длина дуги на которую опирается вписанный угол 35⁰ равна
l = а r , где а - центральный, опирающегося
на эту же дугу (в радианах),
т.е а = 2*35⁰ = 70⁰
10= π/180 радиан => а = 70*π/180 = 7π/18
l = а r = 7π/18 *18 =7π
б) площадь сектора,ограниченного этой дугой равна s = 0,5а r²
пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144
1. правильный шестиугольник, состоит из шести равносторонних треугольников.
найдем сторону шестиугольника ab=r=48/6=8м.
рассмотрим δсdo в нем cd=do=0,5a (где а - сторона квадрата) ⇒ a=2cd
по теореме пифагора найдем сd
r²=cd²+do²=2cd² ⇒ r=cd√2⇒ м
2.центр
вписанной в треугольник окружности - точка пересечения биссектрис его углов.
центр описанной окружности - точка пересечения срединных перпендикуляров.
в правильном треугольнике биссектрисы, медианы и срединные перпендикуляры . центры описанной и вписанной окружности также и
лежат в точке пересечения медиан.
r: r=2: 1, считая от вершины (свойство медиан).
радиус r вписанной в правильный треугольник окружности ( значит, и круга) равен 1/3 его высоты.
радиус rописанной вокруг правильного треугольника окружности равен 2/3 его высоты.
⇒r=2r
πr²=16π⇒r=4
r=2•4=8
πr²=π•8²=64π см²
3.длина окрудности равна l = 2πr => r =l/2π= 36π/2π = 18
а) длина дуги на которую опирается вписанный угол 35⁰ равна
l = а r , где а - центральный, опирающегося
на эту же дугу (в радианах),
т.е а = 2*35⁰ = 70⁰
10= π/180 радиан => а = 70*π/180 = 7π/18
l = а r = 7π/18 *18 =7π
б) площадь сектора,ограниченного этой дугой равна s = 0,5а r²
s = 0,5 *
7π/18 *18² = 0,5 * 7π *18 = 63π
ответ: а)7π; б)63π