А1. ответ: 4.
А2. ответ: 4.
А3. ответ: 3.
А4. ответ: 1.
В1. Дано: ΔАВС, АВ = ВС = АС + 5 см, Р = 34 см.
Найти: АВ.
Решение: Пусть АС = х см, тогда АВ = ВС = х + 5,
x + (x + 5) + (x + 5) = 34
3x + 10 = 34
3x = 24
x = 8
АС = 8 см
АВ = ВС = 8 + 5 = 13 см
ответ: боковая сторона 13 см.
В2. Дано: ΔАВС, АВ = АС, АМ - медиана, Pabc = 40 см, Pabm = 33 см.
Найти: АМ.
Pabm = 33 см
АВ + ВМ + АМ = 33
2 · (АВ + ВМ + АМ) = 66
Так как АВ = АС, а ВМ = СМ, то
2АВ + 2ВМ + 2АМ = 66
АВ + АС + ВС + 2АМ = 66
2АМ = 66 - (АВ + АС + ВС) = 66 - Pabc = 66 - 40 = 16
AM = 16/2= 8 см
С1. 1) Если сумма равных сторон равна 26 см, то боковые стороны равны по 13 см, а основание - 10 см.
2) Обозначим боковые стороны а и b, основание - с.
а + с = 26 см
Рabc = 2а + с = 36 см
с = 36 - 2а
с = 26 - а
26 - a = 36 - 2a
a = 10 см
c = 16 см
ответ: 13 см, 13 см, 10 см или 10 см, 10 см, 16 см.
Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота
АК делит сторону ВС пополам.
ВС=ВК+КС
ВК=КС=3:2=1,5 - катет
АС=3 - гипотенуза
Находим катет АК (теор.Пифагора):
АК2=АС2 - КС2
АК2=3*3 - 1,5*1,5
АК=корень из 6,75
АК=2,598
Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1
АО+ОК=3(части) - составляют 2,598
АО=2части, АО=2,598:3*2=1,732
Рассмотрим треуг.АОМ
ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный
АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС
Находим АМ(теор.Пифагора):
АМ2=АО2+ОМ2
Ом=1;АО=1,732;
АМ2=1*1+1,732*1,732
АМ=корень из 4
АМ=2
Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому