С решением С точек A, Bi C, размещенных по одну сторону от
плоскости а, проведенные прямые, перпендикулярные
к плоскости а. Эти прямые пересекают прямую а
плоскости ав точках D, E IF соответственно. Найдите
длину отрезка BE, если AD = 6 см, СЭ = 9 см,
DE=EF.
Если на одной из двух прямых отложить последовательно равные отрезки и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
Обобщенная теорема Фалеса:
отрезки, высекаемые параллельными прямыми на одной прямой, пропорциональны отрезкам на другой прямой.
Рассмотрим рисунок, данный во вложении.
Согласно теореме
2:3=7:х
2х=21
х=10,5 см
Обратим внимание на то, что сумма двух отрезков на стороне а равна длине третьего отрезка.
Т.е. 2+3=5.
Согласно т.Фалеса
у=7+х
у=7+10,5=17,5 см
К тому же результату придём, если составим и решим пропорцию
3:5=10,5:у
у=52,5:3=17,5
----------
Добавлю, что задачу можно решить через подобие треугольников отношением их сторон. Только это несколько длиннее.