1. 75°; 75°; 30°.
2. 52,5°; 52,5°; 75°.
Объяснение:
Задача имеет два решения
1.
Угол А при основании АС равнобедренного треугольника АВС
∠А = 75°
Второй угол при основании АС также равен 75°
∠С = 75°
∠А + ∠С = 75° · 2 = 150°
По свойству углов треугольника
∠А +∠В + ∠С = 180°
∠В = 180° - (∠А + ∠С)
∠В = 180° - 150° = 30°
2.
Угол В при вершине равнобедренного треугольника равен
∠В = 75°
По свойству углов равнобедренного треугольника углы при основании такого треугольника равны
∠А = ∠С
По свойству углов треугольника
∠А +∠В + ∠С = 180°
2 ∠А + ∠В = 180°
2 ∠А = 180° - ∠В
∠А = ∠С = 0,5 (180° - ∠В) = 0,5(180° - 75°) = 52,5°
Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°
Объяснение:
ребро куба а=1
прямая AC1 диагональ куба
прямая ВС1 диагональ грани ВВ1С1С
у куба все 6 граней квадратные
Диагональ квадрата равна d=a√2
ВС1=1√2=√2
прямая АС1 и ВС1 образует с ребром куба АВ прямоугольный треугольник Δ АВС1, где АС1 гипотенуза, ВС1 и АВ соответственно катеты.
находим по теореме Пифагора
АС1=√ВС1²+АВ²=√(√2)²+1²=√2+1=√3
диагональ АС1=√3
АВ противолежит к углу <АС1В , тогда
sin< АС1В=АВ/АС1=1/√3
Градусная мера угла между прямыми АС1 и ВС1
<АС1В= arcsin ( 1/√3 ) = 35,2643896828°