Так как у ромба все стороны равны, то треугольник всд равнобедренный, значит, углы двс и вдс равны, и равны 30°диагонали ромба пересекаются под прямым угломто если рассмотреть треугольник осд, то со лежит напротив угла 30°, значит, катет ос равен половине гипотенузы, то есть 1/2 дса ос половина диагонализначит, ас=сди так как ад=сд(стороны ромба) то и ас=дс=адзначит, периметр 51: 3=17 см (ас, дс, ад) 17 см малая диагональос значит =8,5 смпо теореме пифагора можно найти додо=√(дс^2-ос^2)=√(17*17-8,5*8,5)=√(289-72,25)=√216,75значит, вся диагональ вд=2√216,75квадрат диагонали =4*216,75=867
Отрезок BD - диаметр окружности с центром О. Хорда AC делит пополам радиус OB и перпендикулярна к нему. Найдите углы четырёхугольника ABCD и градусные меры дуг AB BC CD и AD. --------- Соединим центр окружности с вершиной А. Отрезок ОА - радиус, МО равен его половине. sin ∠ МАО равен МО:АО=1/2. Это синус 30°∠ МАО=30°, ⇒∠ АОВ=60°. ВО=АО=радиус окружности.⇒ △ АОВ равнобедренный. Сумма углов треугольника 180 градусов. ∠ ОВА=∠ОАВ=(180°-60°):2)=60° ⇒ △ АОВ- равносторонний. Углы ВАD и ВСD опираются на диаметр ⇒ они прямые=90°. ⊿ ВСD и ⊿ВАD -прямоугольные, и ∠СDВ=∠АDВ=180°-(90°-60°)=30° ⊿ ВСD=⊿ВАD. ∠ D=2 ·∠АDВ=2·30°=60° Сумма углов четырехугольника 360° ∠АВС=360°- 2·90°- 60°=120° Градусная мера дуги равна центральному углу, который на нее опирается. На дугу АВ опирается центральный угол АОВ=60°⇒ ее градусная мера 60° На дугу СВ опирается центральный угол СОВ=60°⇒ ее градусная мера 60° В треугольнике САD ∠САD=∠DАС=60° Вписанный угол равен половине градусной меры дуги, на которую опирается. На дугу CD опирается вписанный угол САD=60°⇒ она равна 2·60°=120° На дугу АD опирается вписанный угол АСD=60°⇒ она равна 2·60°=120° ответ: ∠А=С=90° ∠В=120° ∠Д=60° градусные меры дуг AB=60° BC=60° CD=120° AD=120°.
Відповідь:
Пояснення:
Нехай множина А = {1 ; 2 ; 3 ; 4 ; 5 } , а множина В = { 3 ; 4 ; 5 ; 6 ; 7 } , тоді множина
С = А U B = { 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 } має 7 елементів .