Дано: равнобедренная трапеция ABCD, P - середина AB, F - середина CD, BC = 4см, AD = 8см, периметр трапеции OPBC = 13см. Найти: периметр трапеции AOFD. Решение. 1) PF - средняя линия трапеции → PO = BC/2 = 4см/2 = 2см, OF = AD/2 = 8см/2 = 4см 2) Периметр OPBC(13см) = OP(2см)+PB+BC(4см)+CO → PB+CO = 13см-6см = 7см 3) PB=FD, т.к. средняя линия PF соединяет середины боковых сторон в равнобедренной трапеции; CO=AO, т.к. средняя линия PF делит диагональ AC на равные отрезки по теореме Фалеса → Периметр AOFD = (FD+AO)(7см)+OF(4см)+DA(8см) = 19см ответ: 19см.
Пусть h - высота треугольника BCP из вершины P и t - высота треугольника CBQ из вершины Q. Тогда высота ADP равна 3h (т.к. треугольники ADP и BCP подобны с коэффициентом подобия 3), А высота ADQ равна 3t (т.к. треугольники ADQ и CBQ тоже подобны с коэффициентом подобия 3). Значит, с одной стороны, высота трапеции равна 3h-h=2h, а с другой стороны, эта же высота трапеции равна t+3t=4t. Значит, 2h=4t, т.е. h=2t. Таким образом, площадь ADQ равна AD*3t/2=3BC*3t/2=9t*BC/2, площадь BCP равна BC*h/2=BC*2t/2=BC*t. Значит, искомое отношение площадей равно 9/2.
Объяснение:
Якщо а - тупий кут , то 90° < a < 180° Тоді звідси маємо
sin²a + cos²a = 1
cos²a = 1 - sin²a = 1 - (5/13)² = 1 - 25/169 = 169/169 - 25/169 = 144/169 = 12/13
cos a = -12/13, оскільки кут у другій чверті, а косинус у другій чверті має знак мінус