Условие дано неточно. ВН и СК не могут принадлежать АD, поскольку точки В и С принадлежат стороне ВС, которая параллельна АD. Правильно: АВСD – трапеция. АВ=6, ВС=5, KD=3, угол А = 60°. BH перпендикулярна AD, CK перпендикулярна AD. Найдите AD и Р(ABCD).
ответ: ВН - высота. Р(АВСD)= 28 (ед. длины)
* * *
а) Отрезок ВН опущен из вершины трапеции на ее основание, перпендикулярен ему и является её высотой.
б) Так как угол ВНА=90°, треугольник АВН - прямоугольный. Сумма острых углов прямоугольного треугольника 90° => угол АВН=30°. Катет АН противолежит углу 30° и равен половине гипотенузы АВ ( свойство). АН=6:2=3.
Четырехугольник НВСК - прямоугольник, т.к его углы прямые. Противоположные стороны прямоугольника равны. НК=ВС=5. и СК=ВН. Рассмотрим ∆ СКD. Катет СК=ВН, катет КD=AH (найдено). ∆ СКD=∆АВН по двум катетам. => СD=АВ=6.
АD=AH+HK+KD=3+5+3=11
Р(ABCD)=AB+BC+CD+AD=6+5+6+11=28.
Прямоугольник ABCD ⇒ ВС=AD=1 cм , CD=AB=√3 см .
АМ ⊥ плоскости ABCD ⇒ AM ⊥ АС , так как АМ ⊥ любой прямой, лежащей в плоскости ABCD . Значит , ΔАМС - прямоугольный и ∠МАС=90° ,
АМ=2 см .
Найдём длину АС из ΔACD , ∠ADC=90° как угол прямоугольника ABCD . По теореме Пифагора имеем
Получили, что катеты прямоугольного ΔАМС равны по 2 см . Значит, этот треугольник равнобедренный . А так как он ещё и прямоугольный , то сумма острых углов равна 90° и ∠АМС=∠АСМ=90°:2=45° .
Угол между прямой АМ и плоскостью ABCD равен углу между наклонной АМ и её проекцией АС на эту плоскость .
Это будет угол ∠АСМ=45° .