М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Katykpoper
Katykpoper
22.08.2020 08:20 •  Геометрия

Если две стороны и угол между ними одного треугольника

равны соответственно двум сторонам и углу между ними

другого треугольника, то такие треугольники равны.

Дано: ∆ АВС; ∆ А1В1С1;

АВ = А1В1; АС = А1С1; ےА = ےА1.

Доказать: ∆ АВС = ∆ А1В1С1

👇
Ответ:
лиза2740
лиза2740
22.08.2020
Hhhljsjsjejsjskyksi
Djsisisnynxn
Ynxjduek
Dd
Dd
D
4,5(15 оценок)
Ответ:
deva70
deva70
22.08.2020
я гей я гей я гей я гей я гей я гей я гей я гей я гей я гей я гей я гей я гей я гей 123 12442
4,4(13 оценок)
Открыть все ответы
Ответ:
VikaTomaRetaSasha
VikaTomaRetaSasha
22.08.2020

АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3,  S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC

S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)

S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,

S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10, 

S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20, 

S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,

S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1

4,4(1 оценок)
Ответ:
Сэээээ
Сэээээ
22.08.2020

1)  Точка, лежащая на единичной окружности имеет абсциссу, равную косинусу соответствующего угла, а ординату , равную синусу этого угла.

То есть, если точка А лежит на единичной окружности, то её координаты можно записать так:  A(\, cosa\, ;\, sina\, )  .

Основное тригонометрическое тождество имеет вид:  sin^2a+cos^2a=1 .

Поэтому проверяем это тождество для заданных координат.

A\Big(\, \dfrac{1}{2}\, ;-\dfrac{1}{2}\, \Big):\ \ \Big(\dfrac{1}{2}\Big)^2+\Big(-\dfrac{1}{2}\Big)^2=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\ne 1\\\\\\B\Big(\dfrac{\sqrt3}{2}\, ;-\dfrac{1}{2}\, \Big):\ \ \Big(\dfrac{\sqrt3}{2}\Big)^2+\Big(-\dfrac{1}{2}\Big)^2=\dfrac{3}{4}+\dfrac{1}{4}=1\ \ \to \ \ B\in okryznosti\\\\\\C\Big(-\dfrac{\sqrt3}{4}\, ;\, \dfrac{1}{4}\, \Big):\ \ \Big(-\dfrac{\sqrt3}{4}\Big)^2+\Big(\dfrac{1}{4}\Big)^2=\dfrac{3}{16}+\dfrac{1}{16}=\dfrac{1}{4}\ne 1

D\Big(\; 0\, ;\, \dfrac{\sqrt2}{2}\Big):\ \ 0^2+\Big(\dfrac{\sqrt2}{2}\Big)^2=0+\dfrac{2}{4}=\dfrac{1}{2}\ne 1

На единичной окружности лежит точка  B\Big(\dfrac{\sqrt3}{2}\, ;-\dfrac{1}{2}\, \Big)  .

Найдём значение угла, соответствующего точке В, лежащей на единичной окружности.

cosa=\dfrac{\sqrt3}{2}\ \ ,\ \ sina=-\dfrac{1}{2}\ \ \Rightarrow \ \ \ a=-\dfrac{\pi}{6}+2\pi n\ ,\ n\in Z\\\\tga=\dfrac{sina}{cosa}=-\dfrac{1}{\sqrt3}=-\dfrac{\sqrt3}{3} \\\\ctga=\dfrac{1}{tga}=-\dfrac{3}{\sqrt3}=-\sqrt3

Смотри рисунок.

2)\ \ \Delta ABC\ ,\ \ AB=4\ ,\ BC=5\ .\ \angle B=60^\circ \\\\AC^2=4^2+5^2-2\cdot 4\cdot 5\cdot cos60^\circ =41-40\cdot \dfrac{1}{2}=21\ \ ,\ \ \underline {AC=\sqrt{21}\ }\\\\P=4+5+\sqrt{21}=\underline {9+\sqrt{21}\ }\\\\\dfrac{a}{sin\alpha }=2R\ \ \to \ \ R=\dfrac{AC}{2\cdot sin60^\circ }=\dfrac{\sqrt{21}}{2\cdot \frac{\sqrt3}{2}}=\sqrt{\dfrac{21}{3} }=\sqrt7

3)\ \ \dfrac{AC}{sinA}=\dfrac{AB}{sinC}=\dfrac{BC}{sinA}=2R\ \ ,\ \ \to \\\\\dfrac{AC}{sinB}=\dfrac{12}{sin50^\circ }=\dfrac{32}{sinA}\ \ ,\ \ \dfrac{AC}{sinB}=\dfrac{12}{0,7660}=\dfrac{32}{sinA}\\\\\\sinA=\dfrac{32\cdot 0,7660}{12}\approx 2,04271

Так как  sin любого угла не превосходит 1, то полученный результат говорит о том, что треугольника с такими размерами не существует. Решения задача не имеет .

4,8(45 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ