Укажите в ответе номера верных утверждений. 1) в любой квадрат можно вписать окружность. 2)если диагональ четырёхугольника делит его углы пополам, то этот четырёхугольник - ромб. 3) в любой четырёхугольник можно вписать окружность.
1) В любой квадрат можно вписать окружность. Верно. В четырехугольник можно вписать окружность, если суммы противоположных сторон равны. В квадрате все стороны равны, значит равны и суммы противоположных сторон.
2) Если диагональ четырёхугольника делит его углы пополам, то этот четырёхугольник - ромб. Неверно. Пример на рисунке. Если бы в утверждении было "диагонали", было бы верно.
3) В любой четырёхугольник можно вписать окружность. Неверно. См. п. 1.
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Дано: KL=27 KN=24 MN=8 Найти: Р(KMN)=? Решение Пусть LN=x, а KM=y (рисунок во вложении). KN является биссектрисой в ΔKLM. Используя свойство биссектрисы составим пропорцию: KL/LN=KM/MN. По условиям задачи KL=27, MN=8, LN=x и KM=y. Подставим значения: 27/х=у/8 Выразим х*у: х*у=27*8=216 (1) Найдём длину биссектрисы KN: KN²=KL*KM-LN*MN По условиям задачи KL=27, MN=8, LN=x и KM=y 24²=27у-8х 576=27у-8х (2)
Решим систему уравнений: {х*у=216 {576=27у-8х Выразим значение х из первого уравнения: х=216/у Подставим его во второе уравнение (метод подстановки): 576=27у-8х 576=27у-8*216/у 576=27у-1728/у (умножим все члены на у, чтобы избавиться от знаменателя) 576*у=27у²-1728 27у²-1728-576у=0 27у²—576у-1728=0 D=b²-4ac=(-576)²-4*27*(-1728)=331776+186624=518400 (√D= 720) у₁=(-b+√D)/2a=(-(-576)+720)/2*27=1296/54=24 у₂=(-b-√D)/2a=(-(-576)-720)/2*27=-144/27 – не подходит, т.к. х < 0
у=KM=24, 24х=216 х=LN=9
Р (ΔKMN)=KN+MN+KM=24+8+24=56 ответ: периметр треугольника KMN равен 56.
Верно.
В четырехугольник можно вписать окружность, если суммы противоположных сторон равны. В квадрате все стороны равны, значит равны и суммы противоположных сторон.
2) Если диагональ четырёхугольника делит его углы пополам, то этот четырёхугольник - ромб.
Неверно. Пример на рисунке.
Если бы в утверждении было "диагонали", было бы верно.
3) В любой четырёхугольник можно вписать окружность.
Неверно. См. п. 1.