на 41,2%.
Объяснение:
1. Пусть r - радиус основания цилиндра, а h - его высота.
V = πr²h - объем цилиндра.
2. Радиус основания цилиндра уменьшили на 30%, т.е. он составил 70% от первоначального, стал равным 0,7r.
Высоту увеличили на 20%, т.е. она составила 120% от первоначальной, стала равной 1,2h.
Новый объём равен
Vн = π(0,7r)²•(1,2h) = π•0,49r² • 1,2h = 0,588• πr²h= 0,588•V.
Получили, что новый объём составляет 58,8% от первоначального, т.е
100% - 58,8% = 41,2% - на столько уменьшился объём цилиндра.
на 41,2%.
Объяснение:
1. Пусть r - радиус основания цилиндра, а h - его высота.
V = πr²h - объем цилиндра.
2. Радиус основания цилиндра уменьшили на 30%, т.е. он составил 70% от первоначального, стал равным 0,7r.
Высоту увеличили на 20%, т.е. она составила 120% от первоначальной, стала равной 1,2h.
Новый объём равен
Vн = π(0,7r)²•(1,2h) = π•0,49r² • 1,2h = 0,588• πr²h= 0,588•V.
Получили, что новый объём составляет 58,8% от первоначального, т.е
100% - 58,8% = 41,2% - на столько уменьшился объём цилиндра.
Объяснение:
ABC - треугольник. Углы при основании (∠A=∠C) равны х°. Тогда (по условию) угол при вершине (∠В) равен 4х°.
Сумма углов треугольника равна 180°. Следовательно,
2x+4x=180;
6x=180.
∠A=∠C=x=30° - углы при основании.
∠В=4x = 30*4=120° - угол при вершине.