1)Очень маленьких объектов, те таких размерами которых можно принебречь.
2)Евклид первоночально определил точку как "то, что не имеет части". В двумерном евклидовом пространстве точка представляла упорядоченной парой (x,y) чисел, где первое число условно представляет горизонталь и часто обозначается x.
3)Точки изображаются острым карандашом или ручкой на листе бумаги или мелом на доске.
4)Точки обозначаются простыми буквами: А;В;С
5)Тонкой натянутой нити, края стала прямоугольной формы.
6)Евклид определял прямую как длину без ширины.
7)Прямая изображается так: Часть прямой линии, ограниченная с двух сторон точками, называется отрезком или отрезком прямой.
8)Прямая обозначается одной маленькой буквой, например прямая а, или двумя большими буквами, поставленными при любых двух точках, лежащих на этой прямой, например прямая АВ.
9)Через любые две точки можно провести одну прямую.
10) 1)Точка лежит на прямой
2)Точка не лежит на прямой
11)Одну общую точку.
12)Ровной поверхности, воды, стола, доски.
13)Две прямые, пересекающиеся под прямым углом, называются перпендикулярными.
14)Эти две прямые, которые никогда не пересякутся.
15) Две прямые на плоскости могут располагаться либо паралельно друг другу, либо пересекаться, или совпадать.
16)Аксиоматической метод - это построения математической теории, при котором в основу кладутся некоторые положения, принимаемые без доказательства, а все остальные выводятся из них часто логическим путём.
17)Аксиома - исходное положение теории, принимаемое без доказательств.
18)Теорема - это утверждение, выводимое в рассматриваемой теории из множества аксиом посредством использования конечного множества правил вывода.
19)Доказательство - это сведение о фактах, полученные в предусмотренном законом порядке, на основе которых устанавливается наличие или отсутствия обстоятельств.
1) т.к. сумма углов треугольника=180*, то угол А=180-(82+40)=58*
2) т.к. СС1-биссектриса угла С, то угол С1СВ и угол С1СА=20*
3) т.к. АА1-биссектриса угла А, то угол ВАА1 и угол А1АС=29*
4) т.к. сумма углов треугольника=180*, то угол ВС1С=180-(82+20)=78*
5) т.к. сумма углов треугольника=180*, то угол ВА1А=180-(82+29)=69*
6) из 2 пункта следует, что угол С1СА=20*
из 3 пункта следует, что угол А1АС=29*
7) т.к. сумма углов треугольника=180*, то из 6 пункта следует, что угол АМС=180-(29+20)=131*
8) т.к. угол АМС и угол С1МА1 вертикальные, следовательно они равны, следовательно угол С1МА1=131*
Или так:1) угол С1СА=40:2=20
уголМАС=(180-82-40):2=29
уголС1МА1=углуАМС=180-20-29=131
2)угол ВС1С=180-20-82=78
3)угол ВА1М=360-78-131-82=69
В ромбі протилежні сторони та протилежні кути рівні між собою. Оскільки сторона ромба ABCD дорівнює 8 см, то всі сторони ромба також будуть дорівнювати 8 см.
Більша діагональ AC поділить ромб на два рівних прямокутних трикутника. Позначимо середину діагоналі AC як точку E.
За до теореми Піфагора в прямокутному трикутнику AEC ми можемо знайти довжину меншої діагоналі BD. Відомо, що більша діагональ AC дорівнює 8√3 см, а сторона ромба AB дорівнює 8 см.
Застосовуючи теорему Піфагора:
BD² = AC² - AB²
BD² = (8√3)² - 8²
BD² = 192 - 64
BD² = 128
BD = √128
BD = 8√2 см
Тепер ми маємо всі сторони ромба ABCD: AB = BC = CD = DA = 8 см та BD = 8√2 см.
У ромбі всі кути рівні між собою, тому їх можна позначити як α.
Застосовуючи теорему косинусів в трикутнику ABD:
cos(α) = (AB² + BD² - AD²) / (2 * AB * BD)
cos(α) = (8² + (8√2)² - 8²) / (2 * 8 * 8√2)
cos(α) = (64 + 128 - 64) / (128√2)
cos(α) = 128 / (128√2)
cos(α) = 1 / √2
cos(α) = √2 / 2
Тепер, знаючи значення cos(α), можемо знайти значення α за до таблиці тригонометричних значень:
α = arccos(√2 / 2)
α ≈ 45°
Отже, усі кути ромба ABCD дорівнюють приблизно 45°.