Точки А (-5;-4), В (-4;3), С (-1;-1) являются вершинами треугольника АВС.
а) докажите, что треугольник АВС равнобедренный.
Длина стороны |АВ| = √((Bx - Ax)² + (By - Ay)²) = √((-4 - (-5))² + (3 - (-4))²) = √50 = 5√2 ≈ 7.07;
Длина стороны |ВC| = √((-1 - (-4))² + (-1 - 3)²) = 5;
Длина стороны |CA| = √((-5 - (-1))² + (-4 - (-1))²) = 5;
|ВC| = |CA| Это значит, что треугольник АВС равнобедренный;
б) составьте уравнение окружности, имеющий центр в точке С и проходящий через точку В. Принадлежит ли окружности точка А?
центр в точке С (-1;-1); радиус 5; уравнение окружности; (x+1)²+(y+1)²=5²;
проверяем: принадлежит ли окружности точка А; подставляем её координаты в уравнение;
((-5)+1)²+((-4)+1)²=5²; 25 = 25; точка А принадлежит окружности;
в) найдите длину медианы, проведенной к основанию треугольника.
Найдем точку F - середина стороны AB: Fx = (-5 + (-4))/2 = -4.5; Fy = (-4 + 3)/2 = -0.5;
F (-4.5; -0.5); С (-1;-1); Длина медианы CF: |CF| = √((-3.5)²+0.5²) = √12.5 = 5/√2 ≈ 3.54;
д) считая вершинами параллелограмма АВСD данные точки А, В, С, найдите координаты вершины D.
составим уравнение прямой AD, параллельной BC (с угловым коэффициентом BC), проходящую через точку A; (x+5)/-3 = (y+4)/4 ; y = -4x/3 - 32/3;
составим уравнение прямой CD, параллельной BA (с угловым коэффициентом BA), проходящую через точку C; (x+1)/1 = (y+1)/7 ; y = 7x + 6;
найдём их пересечение. -4x/3 - 32/3 = 7x + 6; x = -2; y = 7(-2) + 6; y = -8;
Это будут координаты точки D (-2;-8);
е) составьте уравнение прямой, проходящей через точки А и С.
уравнение прямой АС: (x+1)/4 = (y+1)/3; y = 3x/4 - 3/4;
Объяснение:
только так смог
1 ЗАДАЧА:
Скорость 1-го х .. Через 5 часов остался путь 176-5х .. Время в пути (176-5х)/х
Скорость 2-го х+5 Проезжает путь 176 . _ _Время в пути 176/(х+5)
176-5х = 176
_х _..___х+5
(176-5х)(х+5) = 176х
176х - 5х2 + 176 ∙ 5 - 25х = 176х
5х2 + 25х - 176 ∙ 5 = 0 Делим на 5
х2 + 5х - 176 = 0
D = 52 - 4 ∙ 1 ∙ (-176) = 25 + 704 = 729 = 272
x1 = (-5-27)/2 < 0 не удовлетворяет условию задачи, количество деталей не может быть отрицательным
x2 = (-5+27)/2 = 22/2 = 11
Скорость второго на 5 больше
11+5 = 16
2 ЗАДАЧА:
Первый в час делает х+4 деталей 33 деталей сделает за 33/(х+4) часов
Второй в час делает х деталей 77 деталей делает за 77/х
Разность 77/х - 33/(х+4) = 8
77 ___- __33__=_8
х _.___.__.х+4
77(х+4) - 33х = 8х(х+4)
77х + 308 - 33х = 8х2 + 32х
8х2 + 32х - 77х + 33х - 308 = 0
8х2 - 12х - 308 = 0 Разделим на 4
2х2 - 3х - 77 = 0
D = 32 - 4∙ 2 ∙(- 77) = 9 + 616 = 625 = 252
x1 = (3-25)/4 < 0 не удовлетворяет условию задачи, количество деталей не может быть отрицательным
x2 = (3+25)/4 = 28/4 = 7
3 ЗАДАЧА:
Пусть знаменатель равен х, тогда числитель равен х-4.
Если к числителю прибавить 19, то получим выражение х-4+19=х+15, а знаменатель будет х+28.
Дробь (х+15)/(х+28)больше прежней на 1/5.
Составляем уравнение: (х-4)/х+1/5=(х+15)/(х+28).
Приведем все к общему знаменателю и перенесем в одну сторону, у х-20+х)/(5х)=(х+15)/(х+28);
(6х-20)(х+28)=5х(х+15)
6х^2-5х^2-20х+168х-75х-560=0
Получим уравненеие х^2+73х-560=0. Решим и получим х1=-80 (посторонний корень, т.к знаменатель не может быть отрицательным числом) и х2=7.
Эта дробь (7-4)/7=3/7.
проверка: (3+19)/(7+28)-3/7=(22-15)/35=7/35=1/5
Объяснение:Как то так