В треугольнике АВС (АВ=ВС) проведем высоту АН к стороне ВС. Высота тупоугольного треугольника, проведенная из вершины острого угла, лежит вне треугольника.
В равнобедренном ∆ АВС ∠ВСА=∠САВ= 30°,⇒ ∠В=180°-2•30°=120° В Δ АВН угол АВН смежный углу АВС равен 180°-120°=60°. Угол ВАН=180°- 90°-60°=30°.
Примем АВ=ВС равными а. Тогда ВН=а•sin30°=a/2, AH=a•sin60°=a√3/2.
Биссектриса АЕ делит угол ВАС на два по 30°:2=15°. Тогда в прямоугольном треугольнике НАЕ ∠НАЕ=<НАВ+ <ВАЕ=30°+15°=45°. Сумма острых углов прямоугольного треугольника 90°, поэтому ∠НЕА=45°⇒ ∆ АНЕ - прямоугольный равнобедренный (по свойству), и ЕН=АН=a√3/2
НЕ=ВЕ+ВН=(8+а/2 )
Из равенства АН=ЕН следует a√3/2=8+а/2, откуда получим а-8=8√3, ⇒ а=8(√3+1) см
Площадь равнобедренного треугольника равна половине произведения равных сторон на синус угла между ними.
S(ABC)=0,5•a²•sin120°. S(ABC)=0,5•[8(√3+1)]²•√3/2=32√3( 2+√3) см²
Через подобные треугольники и формулу хорды.
Из точки М опускаем перпендикуляр на сторону АС, точку пересечения обозначим через Р. Треугольник АМР подобен треугольнику АВС, откуда АР/АС=АМ/АВ=9/25. Отсюда находим АР=27/25 см.
Теперь обозначаем через О середину стороны АС (т. е. центр окружности) и рассматриваем треугольник ОМР с прямым углом Р. Находим для этого треугольника угол О через его косинус:
ОР=АО-АР=ОМ*cosO, отсюда cosO=7/25.
Теперь найдём хорду АМ, по формуле хорды АМ=2*ОМ*sin(O/2). По формулам приведения sin(O/2)=sqrt((1-cosO)/2)=3/5, поэтому получаем АМ=1,8 см. По пропорции АМ/АВ=9/25 получаем АВ=5 см. По теореме Пифагора ВС=4 см, тогда искомая площадь треугольника равна АС*ВС/2=6 см кв.