Так как ABCD параллелограмм, то BC || AD ⇒ ордината точки C совпадает с ординатой точки B (равной 8)
Пусть абсцисса точки C равна x, тогда C имеет координаты (x; 8)
По формуле расстояния между точками составим уравнение для A и C:
Так как ABCD параллелограмм, то BC = AD = 3 ⇒ абсцисса точки B меньше на 3, чем абсцисса точки C. Чтобы ∠ BAD был острым, нужно, чтобы абсцисса точки B была больше абсциссы точки А.
На основе найденных x, найдём абсциссы точки B:
При x = -1: -1 - 3 = -4 < 5 -- угол тупой (не подходит)
№1 1.У прямой линии нет ни начала ни конца, то есть она бесконечна.
2.Через две произвольные точки можно провести прямую линию, и притом только одну.
3. Через произвольную точку можно провести не ограниченное количество прямых на плоскости.
4.Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или они параллельны.
Для обозначения прямой линии используют или одну малую букву латинского алфавита, или две большие буквы, написанные в двух различных местах этой прямой. №2 Чтобы знать, что означает тот или иной предмет №3 На это ответ не знаю, потому что не уточнили, какие именно прямые, их пересекает прямая или они друг друга.
ответ: 11
Объяснение:
Так как ABCD параллелограмм, то BC || AD ⇒ ордината точки C совпадает с ординатой точки B (равной 8)
Пусть абсцисса точки C равна x, тогда C имеет координаты (x; 8)
По формуле расстояния между точками составим уравнение для A и C:
Так как ABCD параллелограмм, то BC = AD = 3 ⇒ абсцисса точки B меньше на 3, чем абсцисса точки C. Чтобы ∠ BAD был острым, нужно, чтобы абсцисса точки B была больше абсциссы точки А.
На основе найденных x, найдём абсциссы точки B:
При x = -1: -1 - 3 = -4 < 5 -- угол тупой (не подходит)
При x = 11: 11 - 3 = 8 > 5 -- угол острый