В правильной пирамиде в основании лежит правильный треугольник, высота проецируется в центр основания, боковые ребра равны. SA = SB = SC = 2√13 SH = 5 - апофема (высота боковой грани). SO - высота. ОС - проекция наклонной SC на плоскость основания, тогда ∠SCO - угол, который образует боковое ребро с основанием пирамиды. Обозначим его α. Найти надо ctgα.
ΔSHB: по теореме Пифагора НВ = √(SB² - SH²) = √((2√13)² - 5²) = √(52 - 25) = √27 = 3√3 Тогда сторона основания a = AB = BC = AC = 6√3 ОС - радиус окружности, описанной около основания. ОС = а√3/3 = 6√3·√3/3 = 6 ΔSOC: по теореме Пифагора SO = √(SC² - OC²) = √(52 - 36) =√16 = 4 ctgα = OC/SO = 6/4= 3/2
2. Дано: <EAC=<DCA DF=EF Доказать, что ΔABC-равнобедренный. Док-во: 1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда AF=FC. Так как DC=DF+FC и AE=AF+EF, то DC=AE. 2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона). Из равенства Δ следует, что <DAC=<ECA. <DAC=<BAC <ECA=<BCA. Отсюда <BAC=<BCA. Значит ΔABC-равнобедренный. Что и требовалось доказать.
ответ: 34 см.
Объяснение:
ABC - прямоугольный треугольник
S(ABC) = 204 см².
CH⊥AB - высота CH= 12 см.
AB - гипотенуза
S=1/2AB*CH;
1/2AB*12 = 204;
12AB = 408
AB=408/12;
AB= 34 см.