Пусть К - середина СС₁. Противоположные грани куба параллельны, а параллельные плоскости пересекаются третьей плоскостью по параллельным прямым. Значит, линия пересечения плоскости (АВК) с гранью СС₁D₁D будет параллельна АВ. Отметим Н - середину D₁D. СК = DH - как половины равных ребер. СК ║ DH как перпендикуляры к одной плоскости, ⇒CKHD - прямоугольник, значит, КН║CD, ⇒ KH ║ AB. КН - отрезок сечения. АВКН - искомое сечение.
СВ⊥АВ (ABCD - квадрат), СВ - проекция КВ на плоскость основания, значит, КВ⊥АВ по теореме о трех перпендикулярах. ⇒ АВКН - прямоугольник. АВ = 1 ΔВКС: ∠ВСК = 90°, по теореме Пифагора ВК = √(КС² + СВ²) = √(1/4 + 1) = √(5/4) = √5/2 Sabkh = AB · BK = 1 · √5/2 = √5/2
Две пары пересекающихся параллельных прямых отсекают четырехугольник ABCD, противоположные стороны которого попарно параллельны. т.к. принадлежат параллельным прямым. ⇒ АВСD- параллелограмм. В параллелограмме противоположные стороны равны. АВ и СD - противоположные стороны параллелограмма. ⇒ они равны.
2. В получившемся четырехугольнике соединим А и D. Треугольники АСD и имеют равные накрестлежащие углы при пересечении параллельных прямых а и b секущей AD, и той же секущей при пересечении параллельных прямых AB и CD, а сторона AD- общая. Второй признак равенства треугольников. Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны. ⇒АВ=CD
Прямая может либо лежать в плоскости, либо быть параллельной плоскости, либо пересекать плоскость.
Докажем от противного: пусть прямая m не параллельна пл-сти b тогда прямая m либо лежит в плоскости b либо пересекает ее. из условия сказано, что прямая a лежит в плоскости a, тогда остается 1 случай : прямая m пересекает плоскость b. поскольку прямая m лежит в пл-сти а и при этом пересекает пл-сть b - это возможно только в том случае, если пл-сти a и b -пересекают, но по условию -они параллельны. Мы пришли к противоречию. Отсюда следуем, что прямая m параллельна пл-сти b
Противоположные грани куба параллельны, а параллельные плоскости пересекаются третьей плоскостью по параллельным прямым. Значит, линия пересечения плоскости (АВК) с гранью СС₁D₁D будет параллельна АВ.
Отметим Н - середину D₁D.
СК = DH - как половины равных ребер.
СК ║ DH как перпендикуляры к одной плоскости, ⇒CKHD - прямоугольник, значит, КН║CD, ⇒ KH ║ AB. КН - отрезок сечения.
АВКН - искомое сечение.
СВ⊥АВ (ABCD - квадрат), СВ - проекция КВ на плоскость основания, значит, КВ⊥АВ по теореме о трех перпендикулярах. ⇒ АВКН - прямоугольник.
АВ = 1
ΔВКС: ∠ВСК = 90°, по теореме Пифагора
ВК = √(КС² + СВ²) = √(1/4 + 1) = √(5/4) = √5/2
Sabkh = AB · BK = 1 · √5/2 = √5/2