Вкажіть, в якому випадку тонки А, В і С не лежать на одній прямій 1)АВ = 9см, ВС = 4см, АС = 5см; 2)AB = 12см, ВС = 7см, АС = 6см; 3)АВ = 7см, ВС = 14см, АС = 7см; 4)AB = 9см, ВС = 15см, АС = 6см. (розгорнута відповідь)
В равнобедренном тр-ке высота, проведенная к основанию, является и биссектрисой, и медианой. Значит по Пифагору боковая сторона равна √(64+36) = 10см. Косинус угла равен отношению прилежащего катета (высота нашего треугольника) к гипотенузе (боковая сторона), то есть Cosα = 8/10 = 0,8. Отсюда α = 36° (по таблице). Значит угол, противоположный основанию нашего треугольника равен 72°, а его косинус (опять же по таблице) равен 0,31. По теореме косинусов квадрат стороны треугольника равен сумме квадратов двух его других сторон минус удвоенное произведение этих сторон на косинус угла между ними. Значит увадрат искомой медианы равен: 100+25-30*0,31 = 125 - 9,3 =116,7. Тогда медиана равна 10,76см.
Средняя линия треугольника параллельна стороне треугольника и равна ее половине . В условии не сказано, параллельно какой из сторон проведена средняя линия MN, поэтому может быть два варианта решения. 1 вариант: MN параллельна основанию RS, RF=SF, RS+2*RF=30 (дано). Тогда RS=8, а RF=(30-8):2=11. 2 вариант: MN параллельна боковой стороне RF. Тогда RF=SF=8, а RS=30-2*8=14.
Оба варианта удовлетворяют условию существования треугольника (теорема о неравенстве), так как большая сторона меньше суммы двух других сторон.
= 10см. Косинус угла равен отношению прилежащего катета (высота нашего треугольника) к гипотенузе (боковая сторона), то есть Cosα = 8/10 = 0,8. Отсюда
α = 36° (по таблице). Значит угол, противоположный основанию нашего треугольника равен 72°, а его косинус (опять же по таблице) равен 0,31.
По теореме косинусов квадрат стороны треугольника равен сумме квадратов двух его других сторон минус удвоенное произведение этих сторон на косинус угла между ними. Значит увадрат искомой медианы равен: 100+25-30*0,31 =
125 - 9,3 =116,7.
Тогда медиана равна 10,76см.