по правилу треугольника сумма любых двух сторон треугольника больше третьей
пусть х третья сторона треугольника;
тогда
3.7+х>9.4;
9.4+х >3.7
3.7+9.4> х
из третьего условия следует, что х меньше 13.1;
а из первого х >5.7, а
значит, 5.7<х<13.1 , второе условие при этом ограничении справедливо.
Все вычисления в дециметрах производились.
И все же склонен к мысли о том, что задача звучит не совсем корректно, поскольку, если бы нужно было найти наибольшее и наименьшее целые, то был бы ответ на Ваш вопрос 13 и 6, а так ответ остается открытым.
Проведем МN||АВ..
Четырехугольник КВNM - параллелограмм по построению =>
MN=ВК
Рассмотрим треугольники АКМ и СNМ
В равнобедренном треугольнике АВС углы при основании АС равны. =>
∠ВАМ=∠ВСМ
∠АКМ=∠СNМ=∠АВС - соответственные при параллельных прямых и секущей.
Если в треугольниках два угла равны, то равны е третьи углы. => ∠КАМ=∠NMC
ΔАКМ = ΔСNM по второму признаку равенства треугольников. Сходственные элементы равных треугольников равны. =>
АМ=СМ, ч.т.д.
————
Или:
КМ||ВС по условию,, ⇒∠КМА=∠ВСМ - соответственные при параллельных прямых КМ и ВС и секущей АС.
Δ АВС равнобедренный ⇒ ∠ВАС=∠ВСА, следовательно, в ∆ АКМ углы при М и А равны, ∆ АКМ - равнобедренный. КА=КМ=ВК
КМ параллельна ВС ⇒ КМ - средняя линия ∆ АВС и М - середина АС. Отсюда следует равенство АМ=МС.