1. Берілген нүктелер арқылы өтетін түзудің теңдеуін жазыңыз: А(2;1) В(-1;2). [2 ұпай]
2. Шеңбердің берілген теңдеуі бойынша оның центрінің координаталары мен радиусын табыңыз: (х-4)2 +(у+8)2 =36 [1 ұпай]
3. нүктелері берілген.
a) төбелерінің координаталары бойынша салыңыз; [1 ұпай]
b) қабырғаларының ұзындықтарын табыңыз; [3 ұпай]
c) түрін анықтаңыз (теңқабырғалы, теңбүйірлі, тікбұрышты); [2 ұпай]
d) берілген үшбұрыштың ауданын есептеңіз. [2 ұпай]
4. Төбелері А (1;-1) В (0;1) С (4;3) және Д (5;1) нүктелері болатын төртбұрыштың тіктөртбұрыш болатынын дәлелдеп, оның ауданын табыңыз. Ол үшін:
a) төбелерінің координаталары бойынша сызбасын салыңыз; [1 ұпай]
b) қабырғаларының ұзындықтарын табыңыз; [4 ұпай]
c) диагональдарын анықтап, дәлелдеңіз; [2 ұпай]
d) тіктөртбұрыштың ауданын есептеңіз. [2 ұпай]
памагит
а) 44 см б) 54 см.
Объяснение:
Задача має 2 розв"язки.
а) Дано: АВСD - паралелограм, АЕ - бісектриса, ВЕ=5 см, СЕ=12 см. Знайти Р.
Бісектриса кута паралелограма відсікає від нього рівнобедрений трикутник, тому ΔАВЕ - рівнобедрений, АВ=ВЕ=5 см.
АВ=СD=5 см.
ВС=ВЕ+СЕ=5+12=17 см.
АD=ВС=17 см.
Р=5+17+5+17=44 см
б) Дано: АВСD - паралелограм, АЕ - бісектриса, ВЕ=12 см, СЕ=5 см. Знайти Р.
Бісектриса кута паралелограма відсікає від нього рівнобедрений трикутник, тому ΔАВЕ - рівнобедрений, АВ=ВЕ=12 см.
АВ=СD=12 см.
ВС=ВЕ+СЕ=5+12=17 см.
АD=ВС=17 см.
Р=12+17+12+17=54 см