Уравнение окружности в общем виде:
(x - x₀)² + (y - y₀)² = R²,
где (x₀; y₀) - координаты центра,
R - радиус окружности.
1. Окружность с центром О:
координаты центра (0; 0), R = 1,
уравнение окружности:
(x - 0)² + (y - 0)² = 1²
x² + y² = 1
2. Окружность с центром О₁:
координаты центра (- 3; 1), R = 2,
уравнение окружности:
(x - (- 3))² + (y - 1)² = 2²
(x + 3)² + (y - 1)² = 4
3. Окружность с центром О₂:
координаты центра (2; 3), R = 1,
уравнение окружности:
(x - 2)² + (y - 3)² = 1²
(x - 2)² + (y - 3)² = 1
4. Окружность с центром О₃:
координаты центра (3; 0), R = 1,5,
уравнение окружности:
(x - 3)² + (y - 0)² = 1,5²
(x - 3)² + y² = 2,25
5. Окружность с центром О₄:
координаты центра (0; - 3), R = 2,
уравнение окружности:
(x - 0)² + (y - (- 3))² = 2²
x² + (y + 3)² = 4
для нахождения радиуса строим два прямоугольных треугольника. первый: rcd и второй rbd
нам известно, что отрезок ac=20см, bc=12см, dc=17см.
так как rc=rb+bc; rb=ab/2; ab=ac-bc, получаем rc=(ac-bc)/2+bc=(20-12)/2+12=16см
по теореме пифагора находим катет rd=
применяем вновь теорему пифагора, для того чтобы найти гипотенузу db в треугольнике rbd
rb=ab/2; ab=ac-bc, получаем rb=(ac-bc)/2=(20-12)/2=4см
гипотенузу db так же является искомым радиусом окружности.
ответ: r=7см