М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lanchik03
lanchik03
26.09.2020 14:27 •  Геометрия

Найдите площадь полной поверхности тела тела полученного при вращении прямоугольного треугольного треугольника с гипотенузой 8 см и острым углом 60 градусов вокруг большего катета

👇
Ответ:
sjsjsjs1
sjsjsjs1
26.09.2020
Сразу можно сказать, что это тело - конус. Именно конус получается при вращении прямоугольного треугольника вокруг одного из катетов. Для иллюстрации прикладываю рисунок. Теперь решаю задачу. Тут сразу возникает неоднозначность. Сказано, что острый угол в 60 градусов в прямоугольном треугольнике, но не сказано, какой. Поэтому задача имеет два решения. Я рассмотрю и первый случай, так, как у меня так нарисовано, но и второй случай, когда 60 градусам равен другой острый угол. Итак, что мы знаем?
Площадь полной поверхности конуса - это площадь основания конуса + площадь боковой поверхности.
S(бок) = 2пиrh, h - высота конуса, r - радиус основания конуса.
S(осн) = пиr^2
Нам надо знать для решения этой задачи длины высоты конуса и его радиуса. Конечно же, найдём мы их из прямоугольного треугольника ASO.
cos 60 = AO/AS;
cos 60 = r/8
1/2 = r/8
r = 4 - радиус найден.
В треугольнике ASO по теореме Пифагора находим другой катет - высоту конуса.
h = корень из (8^2 - 4^2) = корень из 48
Теперь легко находим полную поверхность конуса как сумму боковой поверхности и площади основания:
S = 16пи + 8 корней из 48 * пи

Если же <ASO = 60 градусам, то рассмотрим теперь такой вариант, совершенно аналогичный прежнему. Рассмотрим всё тот же прямоугольный треугольник ASO.
Тогда <SAO = 30 градусам, а катет, лежащий против угла в 30 градусам, равен половине гипотенузы. таким образом, SO = 1/2AS = 1/2 * 8 = 4
Находим радиус теперь по теореме Пифагора, он равен корню из 48, это высота конуса.  Теперь площадь поверхности находится легко:
S = 48пи + 8корней из 48 пи. ответ на второй случай также получен. Задача решена.

Найдите площадь полной поверхности тела тела полученного при вращении прямоугольного треугольного тр
4,8(82 оценок)
Открыть все ответы
Ответ:
sumanrahmatova
sumanrahmatova
26.09.2020

В научной литературе зафиксировано не менее 400 доказательств теоремы Пифагора, что объясняется как фундаментальным значением для геометрии, так и элементарностью результата. Основные направления доказательств: алгебраическое использование соотношений элементов треугольника (таков, например, популярный метод подобия[⇨]), метод площадей[⇨], существуют также различные экзотические доказательства (например, с дифференциальных уравнений).

Через подобные треугольники

Одним из наиболее популярных в учебной литературе доказательств алгебраической формулировки является доказательство с использованием техники подобия треугольников, при этом оно почти непосредственно выводится из аксиом и не задействует понятие площади фигуры.[10] В нём для треугольника ABC с прямым углом при вершине C со сторонамиa,b,c, противолежащими вершинам A,B,C соответственно, проводится высота  при этом согласно признаку подобия по равенству двух углов) возникают соотношения подобия:  и  , из чего непосредственно следуют соотношения.

При перемножении крайних членов пропорций выводятся равенства:

покомпонентное сложение которых даёт требуемый результат.

(хз надеюсь правильно)


Дополнительное доказательство теоремы Пифагора без косинусов и синусов(сказал препод
4,5(96 оценок)
Ответ:
evgeniifedp08ruw
evgeniifedp08ruw
26.09.2020

Объяснение:

Первый признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны

Второй признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны

Третий признак подобия треугольников

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

ВОТ ПРАВИЛА : САМА ДУМАЙ АХАХ НО Я ХЗ Я ДУМАЮ ЭТО 1 ПРИЗНАК Х

4,6(7 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ