Расстояние между скрещивающимися ребрами правильной треугольной пирамиды равно 12, а синус угла между боковым ребром и плоскостью основания равен 0,3. найдите высоту основания пирамиды
SinA= 12/x x= 12/0.3 =40, т.к пирамида правильная то AB и является той самой высотой по свойству скрещивающихся прямых BH перпендикулярна AH поэтому треугольник ABH прямоугольный, следовательно высота = 40
Дано: ABCD — паралаллелограмм; P = 80 см; BH ┴ AD, BH = 7,5 см; угол A = 30°. Найти: AB, BC, CD, AD. Решение. ΔABH — прямоугольный, т.к. по условию BH ┴ AD (угол ABH = 90°) BH = 0,5AB, т.к. по условию угол A = 30°, а в прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы. AB = 2BH = 2 * 7,5 см = 15см AB = CD, BC = AD (по определению параллелограмма) CD = AB = 15 см P = 2AB + 2BC 2BC = 80 см - 2 * 15см = 50 см AD = BC = 50 см : 2 = 25 см ответ: AB = CD = 15 см, BC = AD = 25 см.