1. Соединим точки А и М (∈одной плоскости) 2. Соединим точки А и С (∈одной плоскости) 3. Построим МТ параллельно АС (МТ∧Д1С1 в точке Т) 4. Соединим точки Т и С (∈одной плоскости) АСМТ - искомое сечение
Радиус вписанной в многоугольник окружности равен отношению его площади к полупериметру r=S:p, где р - полупериметр Треугольник тоже многоугольник, и радиус вписанной в него окружности найдем по этой формуле. Чтобы найти площадь треугольника, нужно знать его третью сторону, основание. Высота известна, боковая сторона - тоже. Высота делит равнобедренный треугольник на два равных прямоугольных, в которых боковая сторона - гипотенуза. высота и половина основания - катеты.. Найдем половину основания по т.Пифагора: 0,5а=√(225-144)=9 см Основание равно 2*9=18 см Площадь треугольника S=ah:2=18*12:2=108 см² полупериметр р=(18+30):2=24 r=108:24=4,5 см
Треугольник равнобедренный. Для вписанной в равнобедренный треугольник окружности, когда известны все стороны и высота, можно вывести формулу: r=0,5*bh:0,5(2a+b) или произведение высоты на основание, деленное на периметр. r=bh:Р r=18*12:(30+18)=4,5 --- [email protected]
Если мы задумаемся и посмотрим вокруг нас, то заметим, что все вещи, даже живые существа имеют геометрические построения. Мы идём в школу и видем дома, которые имеют форму кубов, а крышы на них в форме пирамид. Даже сама школа имеет форму (опиши форму школы: куб, многоугольник или т.п.). Доска на которой пишет учитель представляет из себя прямоугольник, а мел которым пишут на доске, выгледит как цилиндр. Учебник и тетрадь в которой мы пишем ручкой имеют геометрическую форму ввиде паралелепипеда, а ручка, если прегледеться похожа на конус. Сама наша планета на которой мы живём имеет форму шара, и в любом предмете, который на ней существует можно разглядеть геометрические тела.
2. Соединим точки А и С (∈одной плоскости)
3. Построим МТ параллельно АС (МТ∧Д1С1 в точке Т)
4. Соединим точки Т и С (∈одной плоскости)
АСМТ - искомое сечение