можно было и больше поставить, задачка прикольная).. итак поехали:
стороны основания 5, 12 и 13 - это стороны прямоугольного треугольника
(25+144=169 теорема пифагора), а значит радиус вписаной окружности в основание равен р=(5+12-13)/2=2.. есть такая формула)
т.к. угол наклона у граней одинаковый, то и высоты у треугольников составляющих эти грани тоже будут одинаковы и будут составлять с высотой пирамиды и радиусом вписаной окружности в основание одинковые прямоугольные треугольники, и будут равны:
Н=корень( (4*корень(2))^2 + 2^2 ) = 6
площадь боковой поверхности пирамиды равна сумме площадей её граней, найдём каждую полупроизведением высот на их основания:
S= 5*6/2+12*6/2+13*6/2 = 15+36+39 = 90
Объем пирамиды = V = S осн · H / 3
1) найдем H: так как sina = противолежащий катет / на гипотенузу
находим H = sina·L.
2) найти R описанной окружности основания..т.е 2h/3..R= cosa·L=2h/3 = h = (3 cos a · L)/2..
треугольника..a(квадрат)а(квадрат)/4 = h(квадрат)..a = (3 cos a ·L) / корень из 3...подставляем под формулу для вычисления площади треугольника = a ((квадрат) корень из 3 )/4 ..получаем S = 3 cos(квадрат) A · L(квадрат) · корень из 3 / и все деленное 4..теперь все подставляем в формулу V для объема..
V = 3 · Cos(квадрат) А · sin A · L (куб)· корень из 3 и все деленное на 4
6 ар