Основанием прямоугольного параллелепипеда служит квадрат диагональ параллелепипеда равна 2 корень из 6 а его измерения относятся как 1: 1: 2 найти угол между диагональю параллелепипеда и плоскостью его основания
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
DB₁² = AB² + AD² + AA₁²
x² + x² + (2x)² = (2√6)²
2x² + 4x² = 24
6x² = 24
x² = 4
x = 2 (x = - 2 не подходит по смыслу задачи)
АВ = 2, AD = 2, АА₁ = 4.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁D - наклонная, BD - ее проекция, тогда угол между В₁D и плоскостью АВС - ∠В₁DB.
Известно, что диагонали прямоугольника равны и точкой пересечения делятся пополам. Нарисуем прямоугольник АВСД, проведем в нем диагонали.Точку пересечения диагоналей обозначим О.Проведем ОЕ перпендикулярно ВД.Соединим В и Е.В треугольнике ВЕД ВО=ОД по построению. ОЕ в нем медиана и высота. треугольник ВЕД - равнобедренный Рассмотрим прямоугольный треугольник АВЕ ВЕ=2АЕ ( из равенства ВЕ=ЕД)синус угла АВЕ=а:2а=0,5, отсюда следует что угол равен 30°Второй угол, на который диагональ ВД поделила угол АВС, равен угол СВЕ= 90°- 30°= 60°Остальные углы прямоугольника делятся диагоналями также на углы 30° и 60°.
Известно, что диагонали прямоугольника равны и точкой пересечения делятся пополам. Нарисуем прямоугольник АВСД, проведем в нем диагонали. Точку пересечения диагоналей обозначим О. Проведем ОЕ перпендикулярно ВД. Соединим В и Е. В треугольнике ВЕД ВО=ОД по построению. ОЕ в нем медиана и высота. треугольник ВЕД - равнобедренный Рассмотрим прямоугольный треугольник АВЕ ВЕ=2АЕ ( из равенства ВЕ=ЕД) синус угла АВЕ=а:2а=0,5, отсюда следует что угол равен 30° Второй угол, на который диагональ ВД поделила угол АВС, равен угол СВЕ= 90°- 30°= 60° Остальные углы прямоугольника делятся диагоналями также на углы 30° и 60°.
По условию АВ : AD : AA₁ = 1 : 1 : 2
Пусть х - коэффициент пропорциональности. Тогда
АВ = AD = x
АА₁ = 2х
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
DB₁² = AB² + AD² + AA₁²
x² + x² + (2x)² = (2√6)²
2x² + 4x² = 24
6x² = 24
x² = 4
x = 2 (x = - 2 не подходит по смыслу задачи)
АВ = 2, AD = 2, АА₁ = 4.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁D - наклонная, BD - ее проекция, тогда угол между В₁D и плоскостью АВС - ∠В₁DB.
ΔB₁BD:
sin∠B₁DB = BB₁ / B₁D = 4 / (2√6) = 2/√6 = √6/3
∠B₁DB = arcsin (√6/3)