трапеция АВСД, треугольник ВОС подобен треугольнику АОД по двум равным углам (уголВОС=уголАОД как вертикальные, уголАСВ=уголСАД как внутренние разносторониие), ВО/ОД=3/4, площади подобных треугольников относятся как квадраты подобных сторон, (площадьВОС)^2/((площадьАОД)^2=(ВО/ОД)^2 в квадрате=9/16. площадь АВД=площадь АОД+площадь АВО, площадь АВС=площадь ВОС+площадь АВО, как видно, в площадях АВД и АВС площадь АВО одинакова для обоих и отношение АВД к АВС = отношению АОД к ВОС, (площадьАОД)^2/(площадьВОС)^2=16/9=(площадьАВД)^2/(площадьАВС)^2 поэтому площадьАОД/площадьВОС=4/3=площадьАВД/площадьАВС
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
(площадьАОД)^2/(площадьВОС)^2=16/9=(площадьАВД)^2/(площадьАВС)^2
поэтому площадьАОД/площадьВОС=4/3=площадьАВД/площадьАВС